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Abstract

There are the results of research on effect of
design features of inertial mass’s elastic suspension
on the characteristics of micromechanical gyroscope,
that are operating in self-oscillations’ mode. In
particular such characteristics are the amplitude of
the oscillations along the axis of the excitation and
the output axis. It is shown that the location of elastic
suspension’s elements at the angle of 48° makes it
possible to significantly increase the amplitude of the
output  oscillations and, correspondingly, the
sensitivity of the sensor.
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l. INTRODUCTION

There are next points among the main
requirements for an elastic suspension elements
of micromechanical gyroscopes’ (MMG) inertial
mass (IM):

— the absence of cross-linking between the
translational and rotational motion of |M;

— the assurance of a certain anisotropy of
the suspension’s elastic properties for the assigned
frequency and mode of natural oscillations of IM;

— the linearity of elastic properties, the
smallness of the nonlinear effects in all movements
of IM [1].

One of the main reasons to achieve these
requirements is the occurrence of technological errors
in the manufacture of elastic suspensions.

Elastic suspension elements interlink IM and a
frame.

Il. COORDINATES SYSTEMS

In general, we assume that the base and the
frame (that rigidly connected with the base) are quiet
in the absolute coordinates system.

The coordinates system OXYZ is rigidly
connected to the base. The system O'X'Y'Z'" is
rigidly connected to the IM in such a way that its
origin is at the center of mass of IM, as shown in
Figure 1.

Fig. 1. Arrangement of coordinate system
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IM is considered as non-deformable absolutely
rigid body that has six degrees of freedom (three
translational and three rotational) in the coordinates
system OXYZ. Position of IM is determined by the
position of system O"™X"Y'Z" relatively to the system
OXYZ. This position is specified by six independent
globalized coordinates: the radius vector and the
directional cosines’ matrix of dimension 3x3.

The initial (unperturbed) position of IM is

characterized by the radius vector ﬁo and matrix K.

An arbitrary (perturbed) position of IM s

characterized by the radius vector R and matrix K.
The transition from the coordinate system O'X"Y"Z"
to a system OXYZ is given by displacement vector
o and direction cosines’ matrix ©. The parameters
of arbitrary position of MI could be defined by the
formulas:

R=R, +5:K=0K,. )

I11.  MATRIX OF RIGIDITY

In general, the dimension of matrix of rigidity
is 6x6. This matrix contains the elements Cj. It is
symmetrical (Cj; = C;j)). It determines the dependence
of the forces and moments from the linear
displacement and rotation angles of the IM relatively
the equilibrium:

[F.M]" =C+[5,6]" . )
The matrix of rigidity C is

Ci Co Gz Cy GCs Cp
Cai Gy Cy3 Gy Cys Cy
C = Cai Csp C33 Gy Cy5 Cg6 3)
Cs Cap Cuz Cyy Cys Cyp
Csi Csp Gz Gyy G5 Coe
1C1 Co2 Cez Cos Cos  Cog |

The upper left quarter of the matrix is the
coefficients of the translational rigidity (Cy1, Cs, Cas,
C12, Ci3, Co3). The lower right quarter of the matrix is
the coefficients of the rotational rigidity (Cy4, Css, Ces,
Css, Css, Csg). The remaining coefficients can be
described as crossing or translational-rotational
rigidity (Cy4, Cas, Cig, C24, C25, C26, Cas, C35, C3p).

The elastic suspension of IM consists of n
elastic elements (Fig. 1 shows a case with N = 4).
One built-in support of elastic suspension’s element
is connected with the frame, and another one is
connected with IM.

Let us assume that the elastic elements of the
suspension are performed without any technical
errors. Then cross-links between translational and
rotational motions of IM are absent. In this case, the
matrix of rigidity C becomes diagonal:

¢, 0 0 0 0 O]
0c, 0 0 0 O
c_|0 0 ey 0 0 0
0 0 0 ¢, O O
0 0 0 0 ¢ O
0 0 0 0 0 cyf

Let us assume that the location of the elastic
suspension’s elements and their form leads to the fact

that the coefficient of rigidity Cs3 is much larger than

the coefficients Cy; and C,,. As a result IM has only
two translational degrees of freedom and one
rotational. The hypothesis about these significant
differences between the coefficients Cs; and Cyq, Cx
must be verified in the future. Also we make
assumption about the complete concurrency of the
elastic properties of suspension’s elements and about
the fact that they are arranged symmetrically to the
center of mass of IM. That leads to a lack of the last
IM’s rotational degree of freedom that was
mentioned earlier. In this case, the suspension’s
matrix of rigidity C could be reduced to the
dimension 3%3. This matrix determines the
dependence of the forces from the linear
displacement of the IM relatively the equilibrium:

[FI' =C*[4]". (5)
The matrix of rigidity C is
¢, 0 O
C=/0 ¢, O0]. (6)
0 0 ¢y

The construction of autooscillating
micromechanical gyroscope (AMMG) is described
in [2]. The elastic suspension’s elements of AMMG
should provide linear motion of IM on two axes
(OX and OY) and should prevent either the
displacement along the axis OZ or its rotational
motion. Thus, the requirements for coefficients of
matrix of rigidity will be as follows: C;; and C,

should be much less than Css.
The flexibility matrix of silicon is:

Sll S12 S13 S14 815 SlG
SZl S22 S23 S24 SZS S26
S'= SSl S32 SSS S34 S35 836 ) (7)
S41 S42 843 844 S45 S46
S51 S52 853 SS4 S55 SS6
_861 S62 863 S64 s65 S66_

S1=S,=S5=0,762 10" Pa’, S, = S;3= 5,5 =
= Sy = Sy = Sy = - 0,214 10™ Pa?, Sy = S5 =
= Sgs = 1,255 10™ Pa™, Sy = S;5= S5 = Spy = Sp5 =
= Sz6 = Sas = S35 = Sz = Sus = Sus = Ss6 = Su1 = Ss1 =
= Sg1 = Sap = Ss2 = Sgp = Ssg = Ss3 = Sgg = Ssq = Sgs =
= Sgs = 0 [2].



For directions those are determined by the
direction cosines I, m, and n, the Young's modulus of
silicon is equal to [2]

212 2 2 212 2 2 2012 2 2 242 212 2,2 '
1°(1°S,; + m"S,, +n°S;;) + M*(I°S,, + m°S,, +n°S,;) +n*(I°S,;, + M"S,, +n°S,;) + Mn°S,, +nI°S,; +1"m"S,

For directions those are determined by the
direction cosines | = M = n = 1 the Young's modulus

of silicon E = 2,1 10 Pa. The matrix of direction
cosines is

all aZl a31 1 0 0
a, a, ay|=/0 1 0 (9).
asl a32 a33 0 0 1

Then the elastic constant S;,' is a component
of the elasticity tensor of the quaternary order S;q,,'
and is taking into account the zero elements of the
matrix of direction cosines is
S = Sup' = Ay’ a»° Si, = - 0,214 10 Pa™, (10)
Poisson’'s ratio is

1'=-S,'E=0,0449 . (11)
Modulus of elasticity in shear is [3]
G=_E _=10°Pa. (12
21+ 4

IV. RIGIDITY OF RECTANGULAR
SRAIGHT ELASTIC SUSPENSION’S
ELEMENT

The rectangular straight elastic suspension’s
element is shown in fig. 2. The rigidity of the k-th
such element is defined by the following
expressions [3]:

C1 = EDR®I®; ¢y g = EbhI™;

C3w = Eb3hl'3 v Cam= 1/3Eb h| (13)

Cs (k) = GBb3h|'1; Cé (k) = VsEbh’I" l.

If IM moves linearly relatively to the axis OX
IM every K-th elastic suspension’ element will be
distorted bendingly with the coefficient of rigidity
C4k) and will be distorted extensionally with the
coefficient of rigidity Cy (k).

HE—3+
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Fig. 2. Rectangular straight elastic suspension’s element

Let built-in support of the Kk-th elastic
suspension’s element (that is connected with the
frame) remains stationary. Let another built-in
support of the K-th elastic suspension’s element will
move along the OX axis to a distance X, relatively
the equilibrium if this element turns around the OZ

®)

axis by an angle 0 relatively the equilibrium.

If IM moves along the axis OX then all four
elastic suspension’s elements will be distorted
bendingly and extensionally.

In this case, the elastic bending moment is
equal to

Mben x (k) = Ca (k) 0 - (14)
At the same time it is equal to
Mben x (k) = Felbenx o) * 1, (15)

Fel ben x (k) — elastic bending force of K-th elastic
suspension’s element that will act on IM if built-in
support of this element will move along the OX axis
to a distance Xk relatively the equilibrium.
Fel ben x (k) could be expressed from (13), (14),
and (15):
3p]-2 X
Fabenx gy = E—b3h| -arctg (%) . (16)

If IM moves along the OX axis then the sum
of k projections on the OY axis of elastic stretching
forces of elastic suspension’s elements will be zero,
and the projection on the OX axis will be equal to

%20 10 X

elstrx (k) —
2 2
1= +x
\/ (k) . an
-1 I
=Ebhl' (1- ——=)-X
L 7w
(k)
Aly (k) — increase of length of k-th elastic

suspension’s element that is caused by the moving of
IM along the OX axis to a distance X) relatively the
equilibrium.

According to the principle of superposition the
total elastic force (that will act on IM if it moves
along the OX axis) is equal to the sum of the elastic
forces of bending and stretching of n elastic
suspension’s element:

elx - z( elbenx(k) strx(k))

2

X
:4Ebh|1-(%-arctg(%)+ . (18)

I
+(1—w)'x(k))
(k)

The coefficient cy4 is nonlinear.

If IM moves along the axis OY then all four
elastic suspension’s elements will be distorted only
extensionally. According to the principle of

superposition the coefficient Cy; is equal to the sum



of n rigidity coefficients of elastic suspension’s
elements:

Cpp = Cpgy =4EDNIT . (19)
k=1

Ifb=10°"m, h=210"m, | = 10° m then
Co» = 168000 N / m.

Let built-in support of the K-th elastic
suspension’s element (that is connected with the
frame) remains stationary. Let another built-in
support of the K-th elastic suspension’s element will
move along the OZ axis to a distance Z relatively
the equilibrium if this element turns around the OX
axis by an angle  relatively the equilibrium.

If IM moves along the axis OZ then all four
elastic suspension’s elements will be distorted
bendingly and extensionally.

In this case, the elastic bending moment is
equal to

Moenz () = Co (k) V¥ - (20)
At the same time it is equal to
Moen z () = Fetbenz ) - |, (21)

Fel ben z (¢ — elastic bending force of k-th elastic
suspension’s element that will act on IM if built-in
support of this element will move along the OZ axis
to a distance Zy relatively the equilibrium.

Fel ben 2 (k) could be expressed from (13), (20),
and (21):

3
Fibenz 9 = % arctg( (k))

If IM moves along the OZ axis then the sum
of k projections on the OY axis of elastic stretching
forces of elastic suspension’s elements will be zero,
and the projection on the OZ axis will be equal to

(22)

Al -z
Fasrzgo = 2(k)| N
+Z<k)
o (23)
= Ebhl™-(1- ) Zy
|2 +z()
Al, @ - increase of length of Kk-th elastic

suspension’s element that is caused by the moving of
IM along the OZ axis to a distance Zx) relatively the
equilibrium.

According to the principle of superposition the
total elastic force (that will act on IM if it moves
along the OZ axis) is equal to the sum of the elastic
forces of bending and stretching of n elastic
suspension’s element:

ynp z Z ( YIIp U3T Z (k) ynp pact z (k))
1 h2 Z(k)
=4Ebhl™- (a -arctg (T) + (24)
I
+l-——=)"24)
2 2
I*+z

The coefficient C33 is nonlinear.

As it could be understood from (5), (18), and
(24), Cs3 will substantially exceed C11, if h and | are
substantially greater than b.

Thus, let us consider using of rectangular
straight elastic suspension’s elements. So if
coefficients C11, Cp2, and C33 are examined then it
could be concluded that IM will have only one degree
of freedom. IM will only be able to move
translationally along the axis OX. The requirements
for the elastic suspension of AMMG were mentioned
above. These requirements are not satisfied.

V. RIGIDITY OF CURVILINEAR
ELASTIC SUSPENSION’S ELEMENT

Let us consider the use of curvilinear elastic

suspension’s elements. An example of such elements
is shown in Fig. 3.
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Fig. 3. General view of curvilinear elastic suspension’s element

For such form the coefficient of bending
rigidity is defined by the foIIowmg expressmn:

Ceurben = (2ENDY)(OIBY™.  (25)

Let wus consider an S-shaped elastic

suspension’s element that is shown in Figure 4 as a

set of two curvilinear elastic suspension’s elements.

The coefficient of bending rigidity of these elements
is the same:

Ccur ben 1 = Ccur ben 2 = Ceur ben- (26)

In this case, coefficient of bending rigidity of

S-shaped elastic suspension’s element is defined by
the following expression [3]:

C

Capg =

2Ehb?
9IB?

curbent’ Ccur ben2 _
+C

@7)

C

cur ben 1 cur ben 2

B

k]

Fig. 4. S-shaped elastic suspension’s element

According to the principle of superposition if
IM moves along the OY axis then the coefficient of
matrix of rigidity c,, will be equal to the sum of n



coefficients of bending rigidity of S-shaped elastic
suspension’s elements:
_ 8Ehb?

c, =)>C =— . (28)
22 kZ:;, 2(K) 9IB2

Thereatif b =10°m, h=210*m, | = 10°®
m, B =510* mthen Cy =15 N/ m.
If IM moves along the OX axis then the

bending strain will have the form that is shown in
Fig. 5.
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Fig. 5. Bending deformation of S-shaped elastic suspension’s
element in case of IM’s moving along the OX axis

In this case, the elastic bending force Fe ( are
acting on IM while the built-in support of the k-th
elastic suspension’s element (that is connected with
the IM) is moving along the OX axis to a distance X
relatively the equilibrium. This force is equal to:

Fiw = cz(k)-AI . (29)

If IM moves only along the OX axis then sum
of the projections of n elastic bending forces F¢ ¢ on
the OY axis will be zero, and the sum of the
projections of n elastic bending forces Fg ¢y on the
OX axis will be equal to

e

- G Al Xy _
elx (k) — =
12+ X
2Ehb® IJ (T S
~ gIB? - ) X

2 2
\/’I +Xgo

Aly o — an increase of length of the k-th elastic
suspension’s element while its built-in support is
moving along the OX axis to a distance X (k)
relatively the equilibrium.

According to the principle of superposition the
total elastic bending force Fg of n elastic
suspension’s elements is:

n
Fynpx = kZFyﬂpX(k) =
=1

8END’ !
“om

. (31)
)X

2
(k)
The coefficient ¢y is nonlinear.
Similarly the previously considered case of
rectangular straight elastic suspension’s element the
coefficient C33 will substantially exceed Ci11. So it
could be suggested that IM haven’t got the degree of
freedom for linear movement along the axis OZ.

12 +x

VI. RIGIDITY OF CURVILINEAR
ELASTIC SUSPENSION’S ELEMENT THAT IS
LOCATED AT AN ANGLE

Let us consider the case of the disposing of
curvilinear elastic suspension’s elements at the
corners of IM at an angle a = 7 / 4 relatively to the
O"X" axis as it is shown in Fig. 6.

The expression of the elastic bending force
Fel (k) is the same as (29). If IM moves along the OX
axis then the bending strain will have the form that is
shown in Fig. 7.

Fig. 6. Case of of the disposing of curvilinear elastic suspension’s elements at the corners of IM
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Fig. 7. Bending deformation of S-shaped elastic suspension’s
element in case of IM’s moving along the OX axis, and disposing
of this element at the corners of IM at an angle « to the O"X" axis

If IM moves along the axis OX to a distance
Ax relatively the equilibrium (let us assume that Ax
does not exceed the value of 1 cos a) then the
projections of elastic bending forces Fe x (k) com Of
two elastic suspension’s elements (toward those 1M
moves) on the OX axis will be equal to

Felx (k) com = C2 (k) " Al-sinf =

\/2 2
°2(k)'( A +1 =2-Ax-l-cosa —1)-(I-cosa - AXx)

2 2
AX +1 —-2-Ax-l-cosa

3
2Ehb |
. (1-

P
9IB \/Ax +1 =2-Axl-cosa

)+ (I-cosa — Ax)

(32)
the projections of elastic bending forces Fej x (k) ten Of
two elastic suspension’s elements (from those IM
moves) on the OX axis will be equal to

Fyr[p x(k)ten =

2 2
cz(k)-(\/Ax +1 +2-Ax-l-cosa -1)-(I-cosa + Ax)

2 2
AX +1 +2-Ax-l-cosa

3
2Ehb |
——]

5 _\/ > )-(I-cosa + Ax)
9B AX +1 +2-Ax-l-cosa

33

According to the principle of superposition(thg

total elastic bending force F¢ x of N elastic
suspension’s elements (the force that acts along the
OX axis) is equal to the sum of Fg x (k) com and

I:el X (K) ten-

2 3
e T E 4ERD*

Frwe) = ——
el x = el x (k) com el x (k) ten ngz

((1- I
JAX? +12+2-AX -1 -Cos
| . (34)
)-(I-cosa — AX)) =

)-(I-cosa + Ax) -

JAX? +12-2.Ax -1 -cos
_ 4Ehb® I-(I-cosa — AX) ~
- 9IB? JAX? +12-2-AX 1 -cosax
~ [-(I-cosa +Ax)
JAX? +12+2-AX -1 -cos

Similarly the previously considered case
according to the principle of superposition the total
elastic bending force Fg y of N elastic suspension’s
elements (the force that acts along the OY axis) is
equal to the sum of Fely () com and Fery (k) ten:

(2-Ax+

3
yap y :%‘(Z'A)H'
I-(I-sina —Ay) )— . (35)
JAy2+I2—2-Ay-I sina
I-(I-sina + Ay)

\/Ay2+|2+2-Ay-|-Sina
The coefficient C33 substantially exceed Cij.
So it could be suggested that IM haven’t got the
degree of freedom for linear movement along the axis
0oz.
Dependence of coefficients C11 = Cp2 on the

distance of IM’s movement along the corresponding
axis is presented in Fig.8.
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Fig. 8. Dependence of coefficients of matrix of rigidity ci; = c»
on the distance of IM’s movement along the corresponding axis
in case of a =45 °

VII. MODELLING OF AMMG’S DYNAMICS

The equations of AMMG’s dynamics and the
model of this dynamics in software environment
Simulink is presented in [4]. Let us suppose that S-
shaped elastic suspension’s elements disposed at the
corners of IM at an angle o = 7 / 4 relatively to the
O"™X" axis and there is no any energy exchange
between the IM through the frame.



Next parameters are used in the modelling:
m=1.2:10° kr (IM);
Ux = Uy =5- 10" N-s/m (damping coefficients of OX
and OY axes);
®; = 1°/c (angular rate of AMMG’s rotation around
0Z axis);
Fa=150-10° N (force of driver);
Xm = 10-10° m (distance between position sensors
(PS));
U, 4 =5V (input voltage of driver);
Kg = 15-10° N/V (conversion factor of driver);
Kps = 900 VV/m (conversion factor of PS);
Koc = 100 (conversion factor of optical converter);

T,=10"® s (time constant of driver)

There is a dependence of IM’s amplitude along
driving axis OX on an angle of disposition of elastic
suspension’s elements o in Fig. 9. There is a
dependence of IM’s amplitude along output axis OY
on an angle of disposition of elastic suspension’s

elements a in Fig. 10.
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Fig. 9. Dependence of IM’s amplitude along driving axis OX
on an angle of disposition of elastic suspension’s elements o
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Fig. 10. Dependence of IM’s amplitude along output axis OY
on an angle of disposition of elastic suspension’s elements o

The IM’s amplitude along output axis OY will
reach its maximum if an angle o = 48°24'. In this case
the recovery time is 0.06 s, the frequency of
autooscillations is 273 Hz.

The dependence of the coefficients C11 and Cy»
on the distance of IM’s movement along the
corresponding axis in case of o = 48°24" is shown in
Fig. 11.
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Fig. 11. Dependence of coefficients of matrix of rigidity ¢y (red
one) and c,; (blue one) on the distance of IM’s movement
along the corresponding axis in case of @ =45 °

VIII. CONCLUSIONS

Research work has shown that the choice of
angle arrangement of elastic suspension’s elements
makes it possible to optimize the rigidity
characteristics of the suspension. And these
characteristics significantly influence the parameters
and the character of the IM’s motion. Particularly
important is the result showing the presence of a
significant increase in amplitude of the output
oscillations (axis OY) at an angle o = 48 °. The
oscillation amplitude 210 nm provides high
sensitivity and good dynamic range of measurement.
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