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Abstract 

 

There are the results of research on effect of 

design features of inertial mass’s elastic suspension 

on the characteristics of micromechanical gyroscope, 

that are operating in self-oscillations’ mode. In 

particular such characteristics are the amplitude of 

the oscillations along the axis of the excitation and 

the output axis. It is shown that the location of elastic 

suspension’s elements at the angle of 48° makes it 

possible to significantly increase the amplitude of the 

output oscillations and, correspondingly, the 

sensitivity of the sensor. 

Key words: micromechanics, angular rate 

sensor, gyroscope, autooscillation, self-oscillations, 

elastic suspension, rigidity. 

 

 

I. INTRODUCTION 

 

There are next points among the main 

requirements for an elastic suspension elements 

of micromechanical gyroscopes’ (MMG) inertial 

mass (IM): 

 the absence of cross-linking between the 

translational and rotational motion of  IM; 

 the assurance of a certain anisotropy of 

the suspension’s elastic properties for the assigned 

frequency and mode of natural oscillations of IM; 

 the linearity of elastic properties, the 

smallness of the nonlinear effects in all movements 

of IM [1]. 

One of the main reasons to achieve these 

requirements is the occurrence of technological errors 

in the manufacture of elastic suspensions. 

Elastic suspension elements interlink IM and a 

frame. 

 

 

II. COORDINATES SYSTEMS 
 

In general, we assume that the base and the 

frame (that rigidly connected with the base) are quiet 

in the absolute coordinates system. 

The coordinates system OXYZ is rigidly 

connected to the base. The system O
T
X

T
Y

T
Z

T
 is 

rigidly connected to the IM in such a way that its 

origin is at the center of mass of IM, as shown in 

Figure 1. 

 

 
 

Fig. 1. Arrangement of coordinate system 
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IM is considered as non-deformable absolutely 

rigid body that has six degrees of freedom (three 

translational and three rotational) in the coordinates 

system OXYZ. Position of IM is determined by the 

position of system O
T
X

T
Y

T
Z

T
 relatively to the system 

OXYZ. This position is specified by six independent 

globalized coordinates: the radius vector and the 

directional cosines’ matrix of dimension 3×3.  

The initial (unperturbed) position of IM is 

characterized by the radius vector 
0

R


 and matrix К0. 

An arbitrary (perturbed) position of IM is 

characterized by the radius vector R


 and matrix К. 

The transition from the coordinate system O
T
X

T
Y

T
Z

T
 

to a system OXYZ is given by displacement vector 




 and direction cosines’ matrix Θ. The parameters 

of arbitrary position of MI could be defined by the 

formulas: 

R  = 0R  +  ; К =  К0 .   (1) 

 

 

III. MATRIX OF RIGIDITY 

 

In general, the dimension of matrix of rigidity 

is 6×6. This matrix contains the elements cij. It is 

symmetrical (cij = cji). It determines the dependence 

of the forces and moments from the linear 

displacement and rotation angles of the IM relatively 

the equilibrium: 
TT ],[],[ 


CMF   . (2) 

The matrix of rigidity C is  
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The upper left quarter of the matrix is the 

coefficients of the translational rigidity (c11, c22, c33, 

c12, c13, c23). The lower right quarter of the matrix is 

the coefficients of the rotational rigidity (c44, c55, c66, 

c45, c46, c56). The remaining coefficients can be 

described as crossing or translational-rotational 

rigidity (c14, c15, c16, c24, c25, c26, c34, c35, c36). 

The elastic suspension of IM consists of n 

elastic elements (Fig. 1 shows a case with n = 4). 

One built-in support of elastic suspension’s element 

is connected with the frame, and another one is 

connected with IM. 

Let us assume that the elastic elements of the 

suspension are performed without any technical 

errors. Then cross-links between translational and 

rotational motions of IM are absent. In this case, the 

matrix of rigidity C becomes diagonal: 
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Let us assume that the location of the elastic 

suspension’s elements and their form leads to the fact 

that the coefficient of rigidity c33 is much larger than 

the coefficients c11 and c22. As a result IM has only 

two translational degrees of freedom and one 

rotational. The hypothesis about these significant 

differences between the coefficients c33 and c11, c22 

must be verified in the future. Also we make 

assumption about the complete concurrency of the 

elastic properties of suspension’s elements and about 

the fact that they are arranged symmetrically to the 

center of mass of IM. That leads to a lack of the last 

IM’s rotational degree of freedom that was 

mentioned earlier. In this case, the suspension’s 

matrix of rigidity C could be reduced to the 

dimension 3×3. This matrix determines the 

dependence of the forces from the linear 

displacement of the IM relatively the equilibrium: 
TT ][*][ 


CF .             (5) 

The matrix of rigidity C is  

11
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The construction of autooscillating 

micromechanical gyroscope (AMMG) is described 

in [2]. The elastic suspension’s elements of AMMG 

should provide linear motion of IM on two axes  

(OX and OY) and should prevent either the 

displacement along the axis OZ or its rotational 

motion. Thus, the requirements for coefficients of 

matrix of rigidity will be as follows: c11 and c22 

should be much less than c33. 

The flexibility matrix of silicon is: 
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S11 = S22 = S33 = 0,762 10
-11

 Pa
-1

, S12 = S13 = S23 =  

= S21 = S31 = S32 = - 0,214 10
-11

 Pa
-1

, S44 = S55 =  

= S66 = 1,255 10
-11

 Pa
-1

, S14 = S15 = S16 = S24 = S25 = 

= S26 = S34 = S35 = S36 = S45 = S46 = S56 = S41 = S51 = 

= S61 = S42 = S52 = S62 = S43 = S53 = S63 = S54 = S64 = 

= S65 = 0 [2]. 



  

For directions those are determined by the 

direction cosines l, m, and n, the Young's modulus of 

silicon is equal to [2] 
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For directions those are determined by the 

direction cosines l = m = n = 1 the Young's modulus 

of silicon E = 2,1 10
10

 Pa. The matrix of direction 

cosines is  
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Then the elastic constant S12' is a component 

of the elasticity tensor of the quaternary order S1122' 

and is taking into account the zero elements of the 

matrix of direction cosines is 

S12' = S1122' = a11
2
 a22

2
 S12 = - 0,214 10

-11
 Pa

-1
. (10) 

Poisson's ratio is 

μ '= - S12' E = 0,0449 .                 (11) 

Modulus of elasticity in shear is [3]  

10E
G =  = 10  Pa

2(1 ')
.            (12) 

 

 

IV. RIGIDITY OF RECTANGULAR 

SRAIGHT ELASTIC SUSPENSION’S 

ELEMENT 

 

The rectangular straight elastic suspension’s 

element is shown in fig. 2. The rigidity of the k-th 

such element is defined by the following 

expressions [3]: 

c1 (k) = Ebh
3
l
-3

; c2 (k) = Ebhl
-1

; 

c3 (k) = Eb
3
hl

-3
 ; c4 (k) = ⅓Eb

3
hl

-1
;      (13) 

c5 (k) = Gb
3
hl

-1
; c6 (k) = ⅓Ebh

3
l
-1

. 

If IM moves linearly relatively to the axis OX 

IM every k-th elastic suspension’ element will be 

distorted bendingly with the coefficient of rigidity 

c4(k) and will be distorted extensionally with the 

coefficient of rigidity c1 (k). 

 
Fig. 2. Rectangular straight elastic suspension’s element 

 

Let built-in support of the k-th elastic 

suspension’s element (that is connected with the 

frame) remains stationary. Let another built-in 

support of the k-th elastic suspension’s element will 

move along the OX axis to a distance x(k) relatively 

the equilibrium if this element turns around the OZ 

axis by an angle θ relatively the equilibrium. 

If IM moves along the axis OX then all four 

elastic suspension’s elements will be distorted 

bendingly and extensionally. 

In this case, the elastic bending moment is 

equal to 

Mben x (k) = c4 (k) θ .          (14) 

At the same time it is equal to 

Mben x (k) = Fel ben x (k) · l ,  (15) 

Fel ben x (k) – elastic bending force of k-th elastic 

suspension’s element that will act on IM if built-in 

support of this element will move along the OX axis 

to a distance x(k) relatively the equilibrium.  

Fel ben x (k) could be expressed from (13), (14), 

and (15): 
3 -2

(k)

el ben x (k)

xEb hl
F  ( )

3 l
arctg  .     (16) 

If IM moves along the OX axis then the sum 

of k projections on the OY axis of elastic stretching 

forces of elastic suspension’s elements will be zero, 

and the projection on the OX axis will be equal to 

el str x (k)

c x
2 (k) x (k) (k)

F   
2 2x

(k)

-1Ebhl (1 ) x
(k)2 2x

(k)

l

l

l

l

 

 



   



,  (17) 

Δlx (k) – increase of length of k-th elastic 

suspension’s element that is caused by the moving of 

IM along the OX axis to a distance x(k) relatively the 

equilibrium. 

According to the principle of superposition the 

total elastic force (that will act on IM if it moves 

along the OX axis) is equal to the sum of the elastic 

forces of bending and stretching of n elastic 

suspension’s element: 

 

n

el x el ben x (k) el str x (k)

k 1

2
(k)1

(k)
2 2

(k)

F  (F F )

x
4 ( ( )

3 l

(1 ) x )
x

b
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
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  

   


  




.        (18) 

The coefficient c11 is nonlinear. 

If IM moves along the axis OY then all four 

elastic suspension’s elements will be distorted only 

extensionally. According to the principle of 

superposition the coefficient c22 is equal to the sum 



  

of n rigidity coefficients of elastic suspension’s 

elements: 

-1

22 2 (k)

1

c  c  4Ebhl
n

k

   .           (19) 

If b = 10
-5 m, h = 2 10

-4 m, l = 10
-3 m then  

c22 = 168 000 N / m. 

Let built-in support of the k-th elastic 

suspension’s element (that is connected with the 

frame) remains stationary. Let another built-in 

support of the k-th elastic suspension’s element will 

move along the OZ axis to a distance z(k) relatively 

the equilibrium if this element turns around the OX 

axis by an angle ψ relatively the equilibrium. 

If IM moves along the axis OZ then all four 

elastic suspension’s elements will be distorted 

bendingly and extensionally. 

In this case, the elastic bending moment is 

equal to 

Mben z (k) = c6 (k) ψ .         (20) 

At the same time it is equal to 

Mben z (k) = Fel ben z (k) · l,         (21) 

Fel ben z (k) – elastic bending force of k-th elastic 

suspension’s element that will act on IM if built-in 

support of this element will move along the OZ axis 

to a distance z(k) relatively the equilibrium.  

Fel ben z (k) could be expressed from (13), (20), 

and (21): 
3 -2

(k)

el ben z (k)

zEbh l
F  ( )

3 l
arctg  .      (22) 

If IM moves along the OZ axis then the sum 

of k projections on the OY axis of elastic stretching 

forces of elastic suspension’s elements will be zero, 

and the projection on the OZ axis will be equal to 

2 (k) z (k) (k)
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2 2

(k)
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(k)
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,       (23) 

Δlz (k) – increase of length of k-th elastic 

suspension’s element that is caused by the moving of 

IM along the OZ axis to a distance z(k) relatively the 

equilibrium. 

According to the principle of superposition the 

total elastic force (that will act on IM if it moves 

along the OZ axis) is equal to the sum of the elastic 

forces of bending and stretching of n elastic 

suspension’s element: 
n
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 (24) 

The coefficient c33 is nonlinear. 

As it could be understood from (5), (18), and 

(24), c33 will substantially exceed c11, if h and l are 

substantially greater than b. 

Thus, let us consider using of rectangular 

straight elastic suspension’s elements. So if 

coefficients c11, c22, and c33 are examined then it 

could be concluded that IM will have only one degree 

of freedom. IM will only be able to move 

translationally along the axis OX. The requirements 

for the elastic suspension of AMMG were mentioned 

above. These requirements are not satisfied.  

 

 

V. RIGIDITY OF CURVILINEAR 

ELASTIC SUSPENSION’S ELEMENT 

 

Let us consider the use of curvilinear elastic 

suspension’s elements. An example of such elements 

is shown in Fig. 3. 
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Fig. 3. General view of curvilinear elastic suspension’s element 

 

For such form the coefficient of bending 

rigidity is defined by the following expression: 

сcur ben = (2Ehb
3
)(9lB

2
)
-1

.  (25) 

Let us consider an S-shaped elastic 

suspension’s element that is shown in Figure 4 as a 

set of two curvilinear elastic suspension’s elements. 

The coefficient of bending rigidity of these elements 

is the same: 

сcur ben 1 = сcur ben 2 = сcur ben.    (26) 

In this case, coefficient of bending rigidity of 

S-shaped elastic suspension’s element is defined by 

the following expression [3]: 
3

cur ben 1 cur ben 2
2 (k) 2

cur ben 1 cur ben 2

с с 2Ehb
c  =

с с 9lB





 

 (27) 

 

 
 

Fig. 4. S-shaped elastic suspension’s element 

 

According to the principle of superposition if 

IM moves along the OY axis then the coefficient of 

matrix of rigidity c22 will be equal to the sum of n 



  

coefficients of bending rigidity of S-shaped elastic 

suspension’s elements: 
3

22 2 (k) 2
1

8Ehb
c  c  

9lB

n

k

           . (28) 

Thereat if b = 10
-5 m, h = 2 10

-4 m, l = 10
-3 

m, B = 5 10
-4 m then c22 = 15 N / m. 

If IM moves along the OX axis then the 

bending strain will have the form that is shown in 

Fig. 5. 

 

 
 

Fig. 5. Bending deformation of S-shaped elastic suspension’s 

element in case of IM’s moving along the OX axis 

 

In this case, the elastic bending force Fel (k) are 

acting on IM while the built-in support of the k-th 

elastic suspension’s element (that is connected with 

the IM) is moving along the OX axis to a distance x(k) 

relatively the equilibrium. This force is equal to: 

el (k) 2 (k)F  c l   .        (29) 

If IM moves only along the OX axis then sum 

of the projections of n elastic bending forces Fel (k) on 

the OY axis will be zero, and the sum of the 

projections of n elastic bending forces Fel (k) on the 

OX axis will be equal to 

2 (k) x (k) (k)

el x (k)
2 2

(k)

3

(k)2 2 2

(k)

c x
F  

x

2Ehb
 (1 ) x

9lB x

l

l

l

l

 
 



   


,  (30) 

Δlx (k) – an increase of length of the k-th elastic 

suspension’s element while its built-in support is 

moving along the OX axis to a distance x (k) 

relatively the equilibrium. 

According to the principle of superposition the 

total elastic bending force Fel of n elastic 

suspension’s elements is: 
n

упр x упр x (k)

k 1

3

(k)2 2 2

(k)

F  F

8Ehb
(1 ) x

9lB x

l

l



 

   



. (31) 

The coefficient c11 is nonlinear. 

Similarly the previously considered case of 

rectangular straight elastic suspension’s element the 

coefficient c33 will substantially exceed c11. So it 

could be suggested that IM haven’t got the degree of 

freedom for linear movement along the axis OZ. 

 

 

VI. RIGIDITY OF CURVILINEAR 

ELASTIC SUSPENSION’S ELEMENT THAT IS 

LOCATED AT AN ANGLE 

 

Let us consider the case of the disposing of 

curvilinear elastic suspension’s elements at the 

corners of IM at an angle α = π / 4 relatively to the 

O
T
X

T
 axis as it is shown in Fig. 6. 

The expression of the elastic bending force  

Fel (k) is the same as (29). If IM moves along the OX 

axis then the bending strain will have the form that is 

shown in Fig. 7. 

 

 
 

Fig. 6. Case of of the disposing of curvilinear elastic suspension’s elements at the corners of IM 



  

 
 

Fig. 7. Bending deformation of S-shaped elastic suspension’s 

element in case of IM’s moving along the OX axis, and disposing 

of this element at the corners of IM at an angle α to the OTXT axis 

 

If IM moves along the axis OX to a distance 

Δx relatively the equilibrium (let us assume that Δx 

does not exceed the value of l cos α) then the 

projections of elastic bending forces Fel x (k) com of 

two elastic suspension’s elements (toward those IM 

moves) on the OX axis will be equal to 

F  -c sinel x (k) com 2 (k)

2 2
c ( x 2 x cos ) ( cos x)2 (k)
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(32) 

the projections of elastic bending forces Fel x (k) ten of 

two elastic suspension’s elements (from those IM 

moves) on the OX axis will be equal to 
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(33) 
According to the principle of superposition the 

total elastic bending force Fel x of n elastic 

suspension’s elements (the force that acts along the 

OX axis) is equal to the sum of Fel x (k) com and  

Fel x (k) ten: 
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. (34) 

Similarly the previously considered case 

according to the principle of superposition the total 

elastic bending force Fel y of n elastic suspension’s 

elements (the force that acts along the OY axis) is 

equal to the sum of Fel y (k) com and Fel y (k) ten: 
3
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( sin y)
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 . (35) 

The coefficient c33 substantially exceed c11. 

So it could be suggested that IM haven’t got the 

degree of freedom for linear movement along the axis 

OZ. 

Dependence of coefficients c11 = c22 on the 

distance of IM’s movement along the corresponding 

axis is presented in Fig.8. 

 

 
 

Fig. 8. Dependence of coefficients of matrix of rigidity c11 = c22  
on the distance of IM’s movement along the corresponding axis  

in case of α = 45 ˚ 

 

 

VII. MODELLING OF AMMG’S DYNAMICS 

 

The equations of AMMG’s dynamics and the 

model of this dynamics in software environment 

Simulink is presented in [4]. Let us suppose that S-

shaped elastic suspension’s elements disposed at the 

corners of IM at an angle α = π / 4 relatively to the 

O
T
X

T
 axis and there is no any energy exchange 

between the IM through the frame. 



  

Next parameters are used in the modelling:  

m = 1.2·10
-6

 кг (IM); 

µx = µy = 5·10
-5

 N·s/m (damping coefficients of OX 

and OY axes); 

ωz = 1°/с (angular rate of AMMG’s rotation around 

OZ axis); 

Fa = 150·10
-6

 N (force of driver); 

xm = 10·10
-6

 m (distance between position sensors 

(PS)); 

Uп d = 5 V (input voltage of driver); 

kd = 15·10
-6

 N/V (conversion factor of driver); 

kPS = 900 V/m (conversion factor of PS); 

kOC = 100 (conversion factor of optical converter); 

T2=10
-8

 s (time constant of driver) 

There is a dependence of IM’s amplitude along 

driving axis OX on an angle of disposition of elastic 

suspension’s elements α in Fig. 9. There is a 

dependence of IM’s amplitude along output axis OY 

on an angle of disposition of elastic suspension’s 

elements α in Fig. 10. 

 

 
 

Fig. 9. Dependence of IM’s amplitude along driving axis OX  

on an angle of disposition of elastic suspension’s elements α 

 

 
Fig. 10. Dependence of IM’s amplitude along output axis OY  

on an angle of disposition of elastic suspension’s elements α 

 

The IM’s amplitude along output axis OY will 

reach its maximum if an angle α = 48˚24'. In this case 

the recovery time is 0.06 s, the frequency of 

autooscillations is 273 Hz. 

The dependence of the coefficients c11 and c22 

on the distance of IM’s movement along the 

corresponding axis in case of α = 48˚24' is shown in 

Fig. 11. 

 

 
 

Fig. 11. Dependence of coefficients of matrix of rigidity c11 (red 

one) and c22 (blue one) on the distance of IM’s movement  
along the corresponding axis in case of α = 45 ˚ 

 

 

VIII. CONCLUSIONS 

 

Research work has shown that the choice of 

angle arrangement of elastic suspension’s elements 

makes it possible to optimize the rigidity 

characteristics of the suspension. And these 

characteristics significantly influence the parameters 

and the character of the IM’s motion. Particularly 

important is the result showing the presence of a 

significant increase in amplitude of the output 

oscillations (axis OY) at an angle α ≈ 48 °. The 

oscillation amplitude 210 nm provides high 

sensitivity and good dynamic range of measurement.  
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