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I. INTRODUCTION
This paper describes the methods of designing of analogue and digital forming filters on the set spectral density or correlation function of target signals. 
Forming filters are the devices intended for formation from white noise (is more rare colored) random process with the set statistical characteristics. Linear forming filters are most often applied, normal white noise is used as entrance signals. Random normal processes with demanded statistical characteristics – spectral density or correlation function will be output signals of such filters.

Forming filters have found wide application at mathematical modeling of radio-electronic systems on the COMPUTER where the algorithm of work of the filter is used for imitation of fluctuations of entrance signals of projected system. Besides, forming filters are used as model of entrance process at synthesis of filters Kalmana-Bjusi, and also for designing of simulators of the information and stirring signals used at seminatural, laboratory and field tests of radio-electronic equipment.

For synthesis of algorithm of work of the forming filter it is necessary to set or spectral density of a output signal of the filter, or its correlation function. From the theoretical point of view it is indifferent what to set, as these two characteristics of random process are connected by univalent transformation of Wiener-Hinchina, that is, knowing one of them, it is possible to find another. However, if the spectral density or correlation function has been received as a result of experiment at the task of statistical characteristics of process it is desirable to use that, from them, which has been received directly, as transformation of an experimental curve can entail increase in an error of the initial data used at synthesis of forming filters.

This work describes synthesis of linear forming filters, on which input normal white noise with a zero average and an individual dispersion moves, is considered. The offered technique with little changes can be generalized and on synthesis of nonlinear filters [2]. Besides restrictions by linear algorithms, restrictions on spectral density and correlation functions are entered, which are considered only such which correspond to Markov processes. Restriction by Markov processes is not essential for developers of equipment as any random process with sufficient accuracy for practice can be approximated by n-dimensional Markov process with corresponding increase n. Restriction by Markov processes is conveniently from the point of view of their modeling on the COMPUTER as it allows to receive exact algorithms of modeling at final number of differential equation. 
II. SYNTHESIS OF ANALOGUE FORMING FILTERS
Initial data for synthesis of analogue forming filters (AFF) are spectral density 
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 or correlative function 
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Synthesis AFF on the set spectral density. 
The spectral density of stationary Markov process is represented in the form of fractionally- rational function of frequency [1]
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where function 
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 can be chosen so that its zero and ​ poles would be  laid in the top half-plane, and zero and a pole 
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where 
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, defines frequency transfer function of some steady linear filter which is the required forming filter. The linear differential equation match to this filter.
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For realization AFF on the COMPUTER use the equation (2,4) for its solution it is necessary to choose any numerical method providing the set error of result. The subroutine of the solution of the equation (2.4) defines the mathematical model AFF, realized on the COMPUTER.

At realization AFF on the COMPUTER or in the form of the separate analogue block it is more convenient to use the equation (2.3) which, after division of both parts on 
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It is necessary to notice, that the operator 
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                corresponds to the ideal integrator, for real integrators transfer function will be equal 
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Synthesis AFF on the set correlation function.
While tasking correlation function 
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Thus the sum of weighting coefficients should be equal to unit. Then for transition from 
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Tab 2.1

	The original
	The image

	
[image: image41.wmf])

(

t

d



	1

	
[image: image42.wmf]t

a

e

-



	
[image: image43.wmf])

/

2

2

2

w

a

a

+



	
[image: image44.wmf])

cos(

lt

t

a

e

-



	
[image: image45.wmf]2

2

2

2

)

(

)

(

w

l

a

a

w

l

a

a

+

+

+

-

+



	
[image: image46.wmf])

sin(

lt

t

a

e

-



	
[image: image47.wmf]2

2

2

2

)

(

)

(

w

l

a

w

l

w

l

a

w

l

+

+

+

+

+

-

-




It is necessary to notice, that synthesis AFF on set 
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, presented in the form of the weight sum of curves of type (2.5) ,at positivity of weight factors, output signal AFF can be treated as the weight sum of output signals private AFF, each of which is raised by the white noise.
Really, let 
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Output signal AFF we will present as
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 an output signal of i- th AFF, defined by the correlation function.
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. Private AFF contain no more than two integrators, despite necessity of a multidimensional entrance signal, it can appear more comprehensible on accuracy of reproduction of statistical characteristics of output process, as two-multiple integration on analogue integrators is carried out much more precisely, than n-fold.
In summary we will give an example synthesis AFF.
Example 2.1.

Let correlation function is equal
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Synthesis on 
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Synthesis on 
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From which directly receive frequency transfer function of the filter
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III. SYNTHESIS OF DIGITAL FORMING FILTERS
For the purposes of digital forming filters (DFF) we will consider, that signal digitization is made with period Т, and digit capacity of digital elements on which is realized DFF, is so great, that signal quantization on level can not be considered. This assumption practically is always carried out at realization DFF on the COMPUTER, at use of modern microprocessor complete sets Bis always it is possible to increase their digit capacity. Therefore such restriction is not too strong for the developer ​ of equipment. Besides, the effect of quantization can be always considered by mathematical modeling of received structure DFF, for the purpose of getting more exact statistical characteristics of an output signal of the filter, on which it is possible to modify the synthesized structure.

As input signal DFF we will use discrete normal white noise - trellised casual process 
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 where М – a sign on mathematical averaging. For getting  a preset value of a dispersion of a signal such DFF it is necessary to increase its output signal on size equal to a square root from the set dispersion. As to spectral density of trellised casual process use three its kinds.
The first kind – spectral density as function of circular frequency 
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The second kind - spectral density as function 
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     The third kind - spectral density as pseudo-frequency function 
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This transformation allows to observe only one period
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Any digital filter is completely defined by the difference equation or discrete transfer function
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Synthesis DFF on the set spectral density.
Any type of spectral density 
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After that we receive 
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which also factorize as well as 
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If DFF is used for generation of an entrance signal of radio-electronic system, then 
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That physically means a delay of an output signal of the filter on 
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 steps, if DFF is used in filter Kalmana-Bjusi it is impossible to enter a delay. This feature DFF allows to represent 
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To the digital filter with frequency transfer function  
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multiplication 
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where 
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Synthesis DFF on correlation function.
While tasking correlation function 
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As well as for AFF it is possible to treat target signal DFF as the sum of target signals of private forming filters (only at positivity of weight factors).

Other approach to construction DFF which uses only correlation function
[image: image164.wmf])
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, is possible also. This approach is stated in [3], its consideration is beyond this work.
IV. CONCLUSION
This paper describes classical methods of synthesis of digital and analogue forming filters. At realization of these filters on the Computer it is more preferable the methods of the synthesis using set correlation function, and at realization of filters in the form of separate analogue devices (or on the analogue COMPUTER) it is more convenient to use spectral characteristics of modeled signals.
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