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The paper studies the method of synthesis of parameters for
continuous and pulsed nonlinear control systems according to
the specified dynamic characteristics. The Sustem’s parameters
are determined as a result of application of direct variational
method (the method of ortozonal projections) to solving the
problem of synthesis.

1. INTRODUCTION

Various branches of industry require creation of new. more
perfect continuous and pulsed control systems, whose dynan-
ics s described by nolinear higher-order differential equations.

Existing traditional methods of synthesis of nonlincar con-
trol systems either are applicable to rather simple systems of
not 1
backs. which limit their application for synthesis of nonlinear

h order. or have a number of peculiarities and draw-

control systems with several nonlinearities.

In this connection one of the most important problem s de-
velopment of versatile methods for synthesis of continous and
pulsed nonlinear control systems and ereation of algorithmic
and programming support on their basis.

II. PROBLEM STATEMENT AND GENERAL OUTLINE FOR
SOLVING PROBLEM OF SYNTHESIS

The problem of synthesis is solved in the following state-
ment. The structure of system is assigned and part of its
parameters is known. as for the rest of the parameters relating
10 one or several units of the system, they are subject of

determini

such that the the specified quality indices of

the transient process are approximately provided (speed of

response- . overcontrol- D and a number of oscillations
- o). Tn this case the system absolute stability and sensitivity
as 1o the varied (desired) parameters should be provided
unconditionaly

The problem of synthesis is solved under technical limita-
tions imposed on the values of varied parameters
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Limitations for the system sensitivity as to the varied

parameters are of the following form:
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A" the specified value of the system sensitivity

6= variations of parameters, within which the absolute
stability of the system is provided

Let us consider a continuous system with one nonlincar cle-
ment. The system motion is described by nonlinear differential
equation

Q(ow.p)z + Riow, ply = Slow. p)Hf(1) 3)

where

Q(0y.p). R(0),.p). 5(0y.p)- polynomials of differentiation
operatar p with constant power indices n. u. v. respectively
(w=n—1lv<n
y= F(z.pr)- nonlinear function.

£(t)- extemal action

Let us consider the problem of parameters synthesis for the
nonlinear control system with extemal action f(t) = H1(t)
and null initial conditions for the time ¢ = 0, i.e. before the
stepwise external action H is applied to the system

(1)
o

0. “)

Since the system should be stable with synthesized param-
cters. then
z(xc) = Ho, #(x) =0, r(x)m 1 =0, 5)

where Hy is defined by the system constant-error behaviour
Synthesis of continuous nonlinear systems by the method of
orthogonal projections is studied in [1]

The system is chosen consisting of m continuously differ-
entiated lineary independent coordinate functions i (1)(q
1.2..m)

@1{t), e om(t) (©)

In accordance with required quality indices the desired
transient process 29(t) is specified in the form

.
£(t) = Wolt) + 3 aWilt), ul
=
where
Wolt) = w(t)1(0)-function. which satisfies specified
boundary (initial (4) and terminal (5) conditions):
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Let us substitute the desired process (7) into the system
dynamics equation (3) and form the discrepancy

W(ok 1)

A0k, D)2 (t) + Ry, D)F (1), D(x"(1))]
)
S(ow. D)H1(1)

where

D- operator of generalized differentiation

If one assume that the system with synthesized parameters
is stable. then 0, parameters are determined such that discrep-
ancy (8) is orthogonal with respect to coordinate functions (6)

[ wtensregon o

It is accepted to name such integrals as “Calerkin inte-

als™. When solving the set of m algebraic equations (9),

we determine the values of 0 varied parameters.

Thus. the direct variational method- the method of orthog-

onal projections- is applied for solving problem of synthesis.

In general case, however, the assumption about the system
stability is not justified. in view of this fact the stability of
system with synthesized parameters wil be provided apart. as
painted out below

[11. CONSTRUCTION OF DESIRED TRANSIENT PROCESS
AND SELECTION OF COORDINATE FUNCTIONS

In the first approximation the process running in the second-
order system may be accepted as desired process

2°(t) = [Ho + H*e "cos(5t — pa)]1(t). (10)
where
=t an
wspo

Hy- value of o(t) when £ = > (constant-error behaviour
of the system)

Hy- amplitude of desired process when 1-+0:

o phase shift, which is determined from the formula

alfy  Ho) 10,
i(Hy - Ho)

To faciliate differentation and integration of desired process

o0 = aretg 1)

it is convenicint to reduce it to exponential form. As a result
of algebric transformations we can get

2°(t) = [Ho + (B cos 3t + C'sin ft)e"*]1(t). (13)

where

B=H'cospo;  C=H'singy (14

After expansion of sine and cosine by the Euler formulae
the expression for desired process takes the form:
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we shall finally get
KO(1) = [Ho + ey~ @9 4 ey @10 (17)

However such representation of the transient process. which
takes place in the system. is simplified adn reduces the
accuracy of determining the varied parameters. Therefore] it
is expedient to specify the transient process in the form as

follows:

2(t) = [Ho + Y (caae™ @ 4 cpe=@RM]11) (1)
=

where

(et + ) = Ho (19
=

We chose the set, consisting of m continuously differenti-
ated linear independent coordinate functions in the form of a
series of exponents

et gt ot 0

From the practice of using this approach it is expedient to
choose the damping factor of this series py in the following
form

k
ma s 21
” tn '
where 3 < k< 4 and the rest of the coefficients

time of any of these

should be chosen so that the dampi

exponents is less than the damping time of the first exponent
For the uniformity of calculations it is convenient to choose
the damping factors of the series in the form of eeometric

progression with ratio 2. i,

it 01
pg= =2t

IV PIECEWISE-LINEAR APPROXIMATION OF NONLINEAR
ELEMENTS CHARACTERISTICS AND COMPUTATION OF
GALERKIN INTEGRALS

The exact account of nonlinear characteristics of the sys-
tem’s elements results in considerable complication of compu-
tation. It is expedient to make approximation of characteristics

of the system’s elements by straight-line segments, ie. to use

piccewise-linear approximation
Each segment of the piecewise-linear function may be
presented in the form:
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Then it is possible to put down the piecewise-linear function
in the form:

F(x) =@z + b+ (a2~ a)z + (b)) —10) + .. =
"

= b+ Y (@ - a)r+ (B —0)O(E —5i). 24)
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then the final form of the equation for the piecewise-linear
function will be obtained

"
F(z) =Y (ki + )0z — ;). @n
=

Let us examine the nonlinear element in the piecewise-linear
representation and the process running in the system. From
the switehing coordinates 1. 7. ., it is possible (o define the
switching moments ¢, o, .... 1t is supposed that during the
process being examined it tumed out 1 switches. Then, for the

desired process (18). it may be put down

Fl2()] = 3 (( Ho+ (28)
=]
+ 3 (e @ e @) L et 1)
=

Substitution of (8) into the set of equations (9) results in
[ e
I

+/ Rioy, D)F[2" (1), (t)dt (29)
Jo

/ S(ow. DH(t)p,(t)dt =0, k.q m

Let us examine the calculation of integrals in expression
(29). We introduce designations

“lw:/ QU D)a" () (H)d

Jo

By / Rioy, D)F[2"(t)]ipg(t)dt: (30)
a

c,

:/ S(ow, DYHI(t)p,()dt.
o
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A, Computation of Cys

y

Cow /D”[m/]mwr
0
1
Coo = —
" g
Cow = pyCytry = P (32)
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Bw:Zf o+ Y ewe @ (3
=

=
e @A) L ety

after taking integral of each summand and similar terms
reduction the expression takes the form

ki +
Buo =3 (==
=

caky
TN

awitpdty  (34)

@by

a5 py

after rationalizing the denominator we obiain

ki +
Buo =3 (==
=

T

——
Y@ ((au + py)eos(Buty + pa) - (35)
;\ T A

fesin(faty + :))));

affer substitution

3 et cos(Buty + ) = 2 (1), Hy =0, (36)

=
expression (35) takes the final form
TG 2t (o pg)a ()
By = G+ ) (8) 37

fpo— (ot

5, sin(fty + ¢,
(ot p)
Besides. from the properties of Laplace transform

[ DO i = gy = B
o (38)
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The values of Ay integrals are obtained in a way similar
to computations for B,

(0 + pa) €08 0 + fsin
(Y]

(39)

Ay = Aoy 0

V. REDUCTION OF SYNTHESIS PROBLEM TO THE PROBLEN
OF NONLINEAR PROGRAMMING

According to general outline of solving problem by method
of orthogonal projections, we assume the set of m coordinate
functions. The condition of discrepancy ¥(o.1) and coordi-
nate functions ¢+ orthogonality results in the set of m alze-
braic equations (29). Since the problem of synthesis is solved
under limitations on o parameters and absolute stability of
the system. then unconditional orthogonality to the coordinate
functions is not achieved as a rule. Therefore, 7 parameters.
meeing the specified limitations. will approximately provide
the discrepancy and coordinate functions orthogonality,
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ity condition we construct the objective functional

’ z‘/) Vo t)ede)?

=Y ailon)Agi+ D bilon) By — Y eulon)Con

e = =)

@)
The o parameters are determined such that the functional
(41) is minimized under limitations on the values of varied
parameters of the system (1), absolute stability of system
(Popov eriterion in algebraic form)
Slw) =Y o™ >0, “2)
=)

sensitivity of system as to paramelers (2).

Thus the problem of parameric. synthesis of nonlinear
control systems is solved as a problem of parametric synthesis
of nonlinear programming
constructed by means of method of orthozonal projections

in which the objective function is

and its minimization approximately provides the specified
quality indices of the system synthesized: time of the transient
process, overcontrol, number of oscilations

V1. DEVELOPMENT OF THE METHOD OF ORTHOGONAL
PROJECTIONS FOR SYNTHESIS OF NONLINEAR PULSED
SYSTEMS

Synthesis of pulsed nonlinear control systems by the method
of ortho
Statement of problem of parametric synthesis of nonlinear

szonal projections is studied in

pulsed control systems is similar to the problem statement in
ilem 2. i.e. the system structure is specified. it is required




[image: image16.png]to determine parameters of the control operator such that
the specified quality indices of the transient mode are ap-
proximately provided with unconditional provision of absolute
stability (42) and limitations (1). (2)

Differential equation of nonlinear pulsed system motion
may be described as follows

Qoy. D)z(t) + Q*(ow. D)x*(t) + Rlow. D)y(t)+ (43)
R (0. D)y (1) = S(0,.. D)f (1) + 5"(0,.. D) (1)
y(t) = Flz(t)].y"(t) = Flz*(t)]

where
Qlow, D) =Y ailo)D',  Q'(o.D) =Y ailay)DF
= =
Rloy. D) =Y bylo)Di,  Ri{ow.D) =Y (o) D’
=1 =

(44

S(@.D) =Y tlonD’.  §' (kD)= eslo)D”

=) =)

polynomials of zeneralized differentiation operator D with
real constant power indices 7, 1", u,u*, v, v*, respectively.

2(t)- coordinates of system for which the synthesis is
carried out.
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2*(t) and f*(t)- pulsed s
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74 systenr’s varied parameters.
In accordance with general outline of solving problem

als of the coordinate examined

by method of orthogonal projections we assume the desired
transient process (18) and a set of continuously differentiated
coordinate functions (20).

We substitute the desired process into equation of the system
motion and form the discrepancy

W (3, 1) = Qlaw, D)a" () + Q" (aw, D)a"™ (t)+
+R(oy,, D)F [2°(t)] + R* (04, D)F [z™(1)] 5)
S(on, D)H1(t) — §*(o1 D)H1"(1)

Orthogonality of diserepancy to the coordinate functions
results in the set of equations as follows

S ailon)Agi+ Y atlon) A+ Y bilow) Byt (46)
= = =

Y b @) By~ Y eul0n)Cp — Y ep(0n)Cry = 0.
= =i =

g=12 .m
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intcerals Ay, B,

C;, are determined by expressions

By / DIF(E ()l Pde; j=0.1,...0" g = 1,2,

_ / Jma—
Cov= /D”[Hl (t)]e*etd
A, Computation of C;, integral

= |, " D o) et —

:/ D”[ZHAU W) Pt

o an

Let us replace integral of sum by the sum of integrals

:ZH/ DYS(t e e
2"

(47)

(48)

)
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(50)

= ZH/; 8O~ wT)ePatde = 3 Hyfpe

an f=)

but

an

finally we obtain

=1

=

Computation of Ay, integral

g

A _/“\D‘[imwiuz‘

ah

ey I TPt

then after expanding integral of sum we obtain

A= ZHU/“ Dia(t -~ nT)e ritdr+

=

(1)

(53)

(54)
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and affer folding geometric sum and assuming Hy = 0. we
obtain

2o o e latBteg) 4o

3 G e Dty

= A e )

=P T T

= (1 (L ")

(55)

after rationalizing the denominator by means of Euler
formulae we finally obtain
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C. Computation of By integral
When we represent the nonlinear element according to item
4.and assume Hy = 0. it may be put down

B, / [P (t))]ePtdt = 7
o

- Zi]maij“:‘(,—m,,m,, .

Tha o

o 18T

ey
e
:

) Zrerm enton

=t

1)+ a)x

ML T 1)d(t - nT)) =

e @ IR | gomenT)

After folding geometric progressions. similar terms reduc-
tion and rationlizing the denominator by means of Euler
formulae we obtain

. o)
Bu=Y (g —

=

Sl T cos(T (4

ZH»(

1+ 1) +¢h)

L 58
W T e (B)

T cos( BT[]+ 93))
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SYSTEMS TO THE PROBLEM OF NONLINEAR PROGRAMMING

Similar to the synthesis of continuous systems, the unknown
parameters . of the system are determined such that the
objective function is minimized

; z‘/) Wl ety

=3 ailon) A + Y ai(on) Ay + > bylow) Byt

Pl = I= ~
(59)

EDILICALNED BEMLACHED BEACA!
= =) =
under limitations imposed on the values of varied parame-
ters @ (1), absolute stability of system (Popov criterion) (42)
Sensivity of system as to parameters oy (2)




[image: image23.png]The method of ortho

onal projections is easily extended
0 continuous and pulsed systems with several nonlinear ele-
ments. In this case the discrepancy vector will be minimized
the dimentional representation of vector being determined by
the number of nonlinear elements of the system.




[image: image24.png]CoNcLUSION

The method of parametric synthesis on the basis of specifie
quality indices of transient mode in continuous and pulse
nonlinear high-order control systems is developed. The synth
sized parameters are determined proceeding from condition
pproximate provision of required quality indices of transicy
mode with unconditional provision of the system stability ar
sensitivity. In terms of computation the problem of synthes

An
Iytic expressions (recurrent relationship) for computation ¢

s reduced o the problem of nonlinear prog

ammin;

objective functions integrals are obtained. When solving th
problem of synthesis the use of these expressions allows |
reduce all computations to perfoming simple al

sebraic oper
tions uniform for nonlinear systems of various complexity an
structure.
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