A RECONFIGURABLE SYSTEM FOR MULTIPLE OFF-LINE SIMULATIONS SUPPORTING FAULT DIAGNOSIS TASKS
Anibal Bregon Bregon, Diego Garcia Alvarez
University of Valladolid,
Valladolid, Spain
Abstract
Continuous systems may exhibit disastrous conse​quences due to different kinds of faults. To reduce its conse​quences, systems must detect and identify these faults. These tasks can be more easily performed using quantitative examples of systems performance in presence of a fault. Modeling and simulation tools can result very useful.
In this article, we propose a system to carry out batch simulations. The system uses mathematical models written in EcosimPro. The results are stored in a database, and information interchange is performed using xml files. Due to the database and xml files the system is fully reconfigurable. The system is able to work independently of the EcosimPro model used, and also with respect to the simulation tool.
Index Terms – Fault Tolerant Control, Simulation, Diagnosis.
I. INTRODUCTION
Our daily life depends strongly on modern technology, from the huge number of complex technological processes to the small daily use devices. The use of control systems in such processes or devices has been exponentially increased during last decades. Although it is quite clear that the use of these control systems free human operators from the tedious task of its manual control, it has not been able to immunize these systems against faults [1], [7] (here, we consider a fault as "a deviation of the system structure or the system parameters from the nominal situation" [1]).
When a fault arises during the normal operation of a sys​tem, the consequences of the fault (production deteriorations, human or machines damages, etc.) could be disastrous and has to be avoided as quickly as possible. The system has to detect the fault and then try to minimize its propagation and/or consequences. That's way the system has to be fault tolerant.
Fault Tolerant Control (FTC) tries to ensure that the systems are able to keep its goal in spite of a fault occurrence, admitting some kind of degradation in its performance [7]. The application of Fault Tolerant Control is useful in some systems (like manufacture systems) and essential in some other safety-critical systems where it is of paramount im​portance to avoid fault occurrence effects (like aerospace systems, where a fault could cause the lost of huge inversions of money or even unrecoverable consequences).
According to Blanke et al. [1] the way of making a system fault-tolerant consists of two steps:
· Fault diagnosis: The existence of a fault has to be detected and the fault identified.

· Control re-design: The controller has to be adapted to the faulty situation so that the overall system continues to satisfy its goal.

Focusing on Fault Diagnosis, this task can be divided into other two [4]:
· Fault Detection: Decide wether a fault has arised in the system or not.

· Fault Diagnosis: Localize the fault and if it is possible identify the fault and its magnitude.

In order to perform this diagnosis task, it is very interesting to know how the system fails and what are the effects of a fault from a quantitative point of view. However, in some kind of continuous systems, like aerospace, it is impossible, dangerous or really hard to obtain these quantitative exam​ples. Nevertheless, in most cases we can obtain mathematical models of the systems performance. Then, we can use simulation tools to reproduce its behavior.
Computer simulation and modeling tools are very useful in continuous systems:
· They can obtain similar results to real systems in a smaller time.

· They allow to build and simulate prototypes of some parts of a system and foresee the effects of its integra​ tion with other parts of the system.

· A process can be isolated from a noisy environment to be exhaustively or experimentally studied.

· They allow to experiment with dangerous or contami​ nant processes.

· It is also useful for training human operators.

Within Fault Diagnosis context, it is very useful provid​ing fault diagnosis modules with a huge set of behavior simulations in very different working conditions. This is also useful in Fault Mode Effect Analysis (FMEA) [5]. But sometimes simulation tools exhibit an inherent complexity when the user desires to carry out and store a huge number of batch simulations. In this article we describe a system that automatically performs multiple off-line simulations of faults that could arise in a plant.
The organization of this paper is as follows. First, we will describe in detail the system and its architecture. Then, we will introduce the simulation tool used in this system. Afterwards, we explain how is organized the database. Next, we will explain this distinctive characteristics of the batch simulations tool and how it can be used to help fault diagnosis tasks. Finally, we discuss the results and draw some conclusions.
II. ARCHITECTURE OF THE SYSTEM
The architecture of the system is shown in figure 1. As can be seen, the system is made up of four different parts.
[image: image1.png]Ecosimpro
simalation
(pLanT)

/ Simblog
oo

opec

Fig. 1. Architecture of the system

The most important part is the one called Simbloq. This part manage the different parameters and conditions for each batch simulation. This part also integrates the communica​tions with the rest parts of the system.
The part called EcosimPro simulation performs one sim​ulation according with the parameters selected in Simbloq.
ODBC performs the communications between Simbloq and the database.
Finally, the database stores all the information of the simulations. Not only the output data but also the distinctive parameters and conditions for each one.
In the rest of the paper we will describe the behavior of these parts.
III. ECOSIMPRO SIMULATION TOOL
As we previously explained (fig. 1), the system uses the EcosimPro simulation tool [3] to perform a simulation, according with a mathematical model written in his own language.
EcosimPro uses an object-oriented modeling language, this language is based in knowledge models based in ordinary differential and algebraic equations. This language is called EL (Ecosim Language) and allows a continuous-discrete modeling. It has been developed for the use in modeling of combined continuous-discrete physical systems. It allows mathematical modeling of complex components represented by differential-algebraic equations.
The most important element in EL is the component. A component represents a model by means of variables, topol​ogy, equations and an event-based behavior. A component may be simple, for example an electrical resistor or capacitor (with a couple of equations); or it may be very complex, with thousands of equations and many events physics equations. All components have one block that represents the continu​ous equations and another that handles all the discrete events.
Besides the components there are ports, who describe the connection between components and functions that can be called from components. In functions an operation is carried out and optionally a value is returned.
Once a model has been created EcosimPro analyzes the code in accordance with the EL syntax and operations are manipulated symbolically to automatically generate the sim​ulation model. With this executable model, experiments can be made. Together with the experiments EcosimPro generate a Dynamic Linking Library file (dll). This file encapsulates the model of a plant and allows other tools to interact with the simulation model. Our system uses this kind of files to carry out the simulations.
However, EcosimPro exhibit some limitations, for example carrying out a lot of simulations and then storing the results in a database is a very tedious task. Furthermore, some information of the models is not represented in EcosimPro.
IV. DATABASE SPECIFICATION
The database in one of the most important parts of the system. Using a database is essential for two main reasons: store the information not included in the model, and store the results of the simulations.
There is some kind of information not encapsulated in the mathematical model of the plant. This information is the state of the plant (high level identification of the working conditions in the plant), protocol (criteria for configuration and management of processes) and fault modes (description about how the system can fail). The database has to store this information, in order to be used during the simulations.
Moreover, all the information generated by the simulation process is stored in the database. The entity-relation diagram of the database is described in [6]. The huge complexity on the design of the database corresponds with the fact that independently on the model of the plant used, the structure of the database has to be always the same. Each plant has its own database to store its structure and experiments, but the global structure of tables and primary keys don't need to be changed.
V. SIMBLOQ
The main part on the batch simulations system is the tool called Simbloq. This tool controls the functionality of the system. It manages the communication not only with the rest of the parts of the system, but also with the human user. Moreover, this tool allows to configure and simulate different experiments and fault modes that could arise in a plant. The simulation is performed with EcosimPro and the results are stored in the database. Simbloq also allows to visualize the results of a simulation experiment stored in the database.
One of the main features of Simbloq is that it is fully reconfigurable. Simbloq is independent with respect to the mathematical model and simulation tool used. The model independence is achieve thanks to the use of the database and XML files. The database stores the information not included in the model. The XML files store the simulation parameters and conditions in a standardized way (see appendix for the DTD of this XML file) . The simulation tool independence is achieved thanks to the design of Simbloq. All functions relating to simulation and communication operations are encapsulated in a class. If the platform changes, only this class and the XML file must be changed.
Simbloq operation is made up of four steps: update database information, configure the batch simulation, sim​ulate and store, and visualize the simulation results. Each of these steps will be detailed next.
A.
Update database information
This step is performed off-line. Before configuring any experiment or running any simulation, user must insert some static information about the plant into the database. These static data is related to the model of the plant. When the model has been designed, the user has to specify some features about the model, and insert them into the database. These features are about the states of the plant, operation pro​tocols, initial states, and boundary and measured variables. These data complete the model.
B.
Configure the batch experiments simulations
Before any experiment can be executed, a set of param​eters and conditions have to be selected. Simbloq allows the user to configure several parameters, that goes from the model of the plant, to the faults that could arise in the plant. The following list shows all the information the user must configure for each batch simulation.
· Model of the plant to be simulated (dll file).

· Database where the data will be stored.

· State of the plant and the operation protocol.

· Total simulation time (SimT).
· Communication interval of the simulation.

· The number of experiments to be simulated and the kind of values for these experiments (fixed values or random values).

· Select the variables in the model that corresponds with output values (sensors).

· Set the boundary conditions for each parameter of the plant.

· Finally, set the faults that could arise in the plant. Here Simbloq allows the user to simulate multiple parametric component faults. For each fault Simbloq allows to select the amount and the instant of the fault.
C.
Simulate and store
Once the parameters and conditions for the simulation have been selected, Simbloq proceeds to carry out the simulations.
[image: image2.png]

Fig. 2. Simbloq flow chart.

Fig. 2 shows the flow chart diagram of this process. As we can see, Simbloq connects with the database and obtains all the information required for the plant. Then makes an iteration for each desired simulation experiment (in which Simbloq looks for the input values of the simulation), inserts initial conditions, and makes the simulation integrat​ing through the total simulation period. During this process, the system inserts some events corresponding with the faults the user desires to simulate (fault time, fault amount, and kind of fault). Finally, the results of each experiment are stored in the database.
D. Results visualization
The user can access the data of all the simulation experi​ments he/she has carried out. When the user selects the name of the database, Simbloq shows the whole list of experiments. By selecting one of these experiments, the tool shows a window with the results of such experiment. An example of this window can be seen in figure 3.
The results shown in this figure have been obtain using the mathematical model a laboratory plant. This plant is made up of four tanks, several pumps, PID controlers, ... The reader can find a detailed description of the plant in [2]
Simbloq also allows the user to perform experiments selective searches, according to different parameters like the name, the author, or the description of the experiments.
[image: image3.png]e oo
e W
S e g Wi i
e it
e v e WhEERas
S o b gt i
e s

Sl e [0

Rt
oo
|z

[

Fig. 3. Graphical interface with some results of an experiment.

VI. DISCUSSION AND FUTURE WORK
A reconfigurable system to carry out batch experiments simulations has been developed. The system integrates sev​eral tools and extends the functionality of some of the tools to ease batch simulations generation. The system has been used within the Fault Diagnosis context, and has proved to be very useful providing fault diagnosis modules with a huge set of behavior simulations in very different working conditions.
The developed system can work properly independently of the simulation tool and the plant used. The system only needs to know the path of the file encapsulating the mathematical model of the plant, and the location of the database. Moreover, the information generated during the configuration of the multiple off-line simulations is stored in xml files.
The system has been tested with the model of a labora​tory plant (see [2]), where several experiments of fourteen different fault modes have been carried out.
As a future work, we plan to extend the XML file, adding some information that now is only included in the database (like the operation mode).
Appendix
[image: image4.png]<!ELEMENT SIMULATIONDATA (USER, FILEDATA, STATE,
‘DNPUTFILE, OUTRUT, BOVNDARY._CONDITIONS, CONPONENTFAULTS)>
<VELENENT USER (VECDMTA)>
<!ELEMENT FILEDATA (FILEPATH, FILENAE,
‘BASENAME, DATABASEWAME, DLLDNTA)>
<!ELEENT FILERATH (45CDATAI>
<IELEMENT FILENME (4PCDATA)>
<iELmENT BASEUME | (4cDMTA)>
<IELEMENT DMTABASENAME | (PCDATA)>

[image: image5.png]experiment CDATA AREQUIRED

iperinent_date CDMTA ARBQUIRED
Librazy ot AmequIRED
orpenant oAt AREQUIRED
compenant_date CDMTA ARBQUIRED
artition date CDMTA ARBQUIRED>

4 " aoama vesguinn
name COATA REQUIRED>
ia coama vmsguim
name COATA REQUIRED>
<!ELEMENT VARTABLES (VAR+)>

variable td cona
type.(BOUNDARY |MEASURED| FAULT) CDATA
econin_nane coua
aup, value couta
e valse Goata
int_value coua

sRsquInED
srscuRED
sREQUIRED
sREQuIRED
sREQuIRED
sREQUIRED
sREQUIRED>

<! ELEMENT SIMULATIONCONDITIONS (STHT, CDNT)>

<!ELEMENT STMT (4PCDATA)>
<tELEMENT CTVI (#PCDATA)
<IELENT IPTFILE. (COUMUAL)>
ot aRequIRED
CoATA ARBQUIRED>

Value ot anmquIRED
nolse (Yes|No) CONTA ARBQUIRED
noisevalue | COATA ARBQUIRED
ampliEude oAt AREQUIRED
raw (Yes|No) CONTA ARBQUIRED
it araw oAt AREQUIRED
aup_dea coma aRequIRED
oraar oAt AReqUIREDS

<{ELEMENT GUTPUT (NEASURED VARIABLE:)>
<!ELEMENT MEASURED_VARTABLE (#FCDRTA)>
<!ELEMENT BOUNDARY_CONDITIONS (IC+)>

nama. coata meguRED
type coaTa dmegUIRED
value coata meguIRED

infvalue CONTA VRBQUIRED
supvalue CONMA WRBQUIRED
<! ELEMENT COMPONENTFAULES (CF4)>

‘camponent ot amequIRED
Component {4 COATA ARBQUIRED
faultmode COATA #RBQUIED
faultmode i CONTA 4REQUIRED
varisile 1d COATA ARBQUIRED
type coama aRmqUIRED
value ot AmequIRED
inatant oAt AREQUIRED
nint coam ARmqUIRED

et Ccoam ARBQUIREDS

ACKNOWLEDGEMENTS
We would like to thank Belarmino Pulido for his help and support to carry out this article, and the system described in this article.
Anibal Bregon (PhD student) is with the Intelligent Systems Group (GSI), Department of Computer Science, E.T.S.I. Informatica, University of Valladolid, Valladolid, Spain anibal@infor.uva. es
Diego Garcia (PhD student) is with the Department of Systems Engi​neering and Automatic Control, University of Valladolid, Valladolid, Spain dieggar@cta.isa.uva.es
REFERENCES
[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault Tolerant Control. Springer, 2003.
[2] A. Breg´on, M. Sim´on, J. Rodr´ıguez, С Alonso, B. Pulido, and I. Moro, "Early Fault Classification in Dynamic Systems Using Case-Based Reasoning," in Current Topics in Artificial Intelligence. CAEPIA 2005 Revised Selected Papers., ser. LNAI. Berlin, Germany: Springer Verlag, 2006, vol. 4177, pp. 211-220.
[3] EA International, EcosimPro modeling and simulation tool. http://www.ecosimpro.com/.
[4] J. Gertler, Fault detection and diagnosis in Engineering Systems. Marcel Dekker, Inc., Basel, 1998.
[5] C. Price, Computer-based diagnostic systems. Springer Verlag, New York, 1999.
[6] O. Prieto, E. Gelso, B. Pulido, J. Rodr´ıguez, and J. Maestro, "Spec​ification for a Versatile Data Acquisition Module for a Supervision Application," 3rd Internation Workshop on Practical Applications of Agents and Multiagents systems (IWPAAMS 2004)., pp. 361-364, 2004.
[7] V. Puig, J. Quevedo, T. Escobet, B. Morcego, and С Ocampo, "Control Tolerante a Fallos (parte I): Fundamentos y Diagn´ostico de Fallos," Revista Iberoamericana de Automatica Industrial, pp. 39-59, 2004.
PAGE
43

