

iMIFARE – A RFID SOLUTION FOR TRACKING MUSEUM VISITS

Danilo Valvo, Luca Porcaro, Alberto Palazzo

DIEEI, University of Catania

Catania, Italy

{danilovalvo, alberto.palazzo1, lukylukep}@gmail.com

Abstract

Information technology has provided a great

force to the communication of art galleries, offering a

variety of channels through which they convey

information flows: in recent years many

technological solutions have been developed to

improve the quality of interaction that will occur

between the visitor and the items shown in the

museum. This is the target of the project "Museum –

Interactive – Working – Through – Rfid Elements",

whose purpose is to provide not only a personal

guide, but also an intelligent search system and a

mechanism for tracking the visitor.

Unlike many other papers [1, 2] which discuss

this topic using a PalmOS-like devices, in this one

the system is fully working and implemented on

common smartphone OS – like iOS.

I. INTRODUCTION

RFID (Radio Frequency IDentification) [3, 4]

is a technology to identify things through a radio

frequency transmission.

The identification involves assigning a unique

identity to an object which allows to distinguish in an

unambiguous way. The main aim is to take

information on objects, animals or people by small

radio frequency devices associated with them.

Gathering information relates to operations

research, selection, tracking, identification, spatial

localization.

The RFID diffusion has taken place the 90s,

and currently there are numerous commercial

solutions at low cost.

RFID technology consists of three basic

elements:

 TAG: a little radio frequency transponder

constituted by an integrated circuit (chip) with

functions of simple logical control, equipped with a

memory, connected to an antenna and inserted in a

container or incorporated into a label, a smart card, a

key or electronic devices (watches, phones, etc..).

Allows the transmission of short-range data without

physical contact;

 Reader: a transceiver controlled by a

microprocessor and used to query and receive

information in response to the TAG;

 Management System: when it exists it

is networked with the Reader.

The TAG

Tags (or transponders) are distinct for the

management by energy sources:

 Passive: they derive the energy for the

operation by the signal from Reader, do not possess

its own transmitter, but re-radiate the modulated

signal transmitted from Reader and reflected by its

own antenna;

 Semi-passive: with battery used to power

the microchip or auxiliary devices (sensors), but not

to power a transmitter; in transmission they behave as

passive TAG;

 Active: powered by batteries. They

incorporate receiver and transmitter as the Reader.

Passive TAG devices are typically low cost

and small dimensions that allow to carry out many

kinds of applications. They are generally made only

by an antenna (typically printed) and a miniaturized

integrated circuit, and can be included in credit cards,

stickers, buttons and other small pieces of plastic,

paper, notes and tickets, this creates real objects

"talking". The TAG also can be either read-only or

read-writable.

For active or semi-passive TAG, in addition to

the greater amount of memory and the function of

rewritable of the same, the technological evolution

has allowed to add, in some cases, functions that

exceed the pure identification. Are mentioned, for

example, the functions of radiolocation (RTLS - Real

Time Location System) or the measurement of

environmental parameters through sensors

(temperature, movement, etc.).

When the TAG passes through the

electromagnetic field (EM) generated by a reader, it

transmits to the reader its own information.

Typically, a passive tag that receives the signal from

a reader, uses the same signal energy to power its

internal circuitry and, consequently, "wake up" their

functions. Once the TAG has correctly decoded as

the signal of the Reader, it responds reflecting its

antenna and modulating the field emitted by the

reader.

The Reader

The Reader (also called "interrogator" or

"controller") is the element that allows you to take

the information contained in the TAG.

This is a real transceiver, governed by a

control system and often connected to a network with

management information systems to be able to

extract information by the identifier transmitted by

the TAG that, unlike bar codes, is unique.

The Reader for active TAG are controlled

transceivers, they can use various techniques to RF

energy. The active TAG, now, are only a small part

covered by specific standards. The TAG Reader for

passive (and semi-passive), instead, must emit RF

signals of a particular type, able to provide to the

TAG also the energy necessary for the response.

Appl ica t ions

In a broader sense the RFID technology

includes a wide range of micro-devices that are used

to identify products. The electronic toll collection,

tags implanted in animals for identification, access

control (and card) which is used to read in proximity

without physical or visual contact, central locking

systems for motor vehicles. The "ski pass" are all

forms of RFID systems.

The communication frequency between reader

and tag depends on the nature of the TAG and the

intended application, and it is standardized by

international and national bodies.

The regulation, however, is divided into

geographical regions with different laws from region

to region.

Now, some frequency bands (typically in LF

or HF) are accepted around the world. An example is

the band of 13.56 MHz, used by many passive tag.

The choice of the working frequency affects the

range of operation of the system, the interference

with other radio systems, the speed of data transfer

and the size of the antenna.

In this paper we will present a system for

visitor management into a museum which provides

both a support to the visitor and to the museum.

The purpose of a museum visit is to obtain

information on the exhibits. The RFID reader

connected to a smartphone will detect the tag simply

by approaching the artwork, and through a

connection to the internal database of the museum,

will provide the visitor its content (text or

multimedia).

The project provides a mechanism for internal

communication: When a user performs a reading of

the tag, the smartphone uses the wi-fi system to

communicate its position and access to remote data.

The information may include information

regarding the historical period, author, etc. Using

these notions will be possible to make specific

searches.

From a management perspective, it is essential

to track users movements between the artworks. It is

useful to estimate the number of visits and the routes

preferred by users (Figure 1).

Fig. 1. Mifare Architectural scheme

II. HARDWARE

We will start first with a description of the

components used in the project and later we will

describe the software architecture of the system.

Arduino Uno

The Arduino [5] is a microcontroller based on

the ATmega328 chip, made entirely in Italy and open

source. It has 14 digital pins Input / Output, 6 analog

inputs, a 16 MHz crystal oscillator, a USB connector,

a power jack, an ICSP header, and a reset button. The

Arduino can be powered by a USB cable, with an

AC-DC or with a battery.

Each of the 14-pin digital on Arduino can be

used as input or output, using the pinMode(),

digitalWrite() and digitalRead().

The ATmega328 chip provides two methods

of communication: UART and I2C.

The UART TTL serial communication is

available on digital pins 0 (RX) and 1 (TX) and

appears as a virtual COM port for your computer.

The Arduino software includes a serial

monitor, which allows you to send and receive data

flow to and from the card with simple text

commands.

RFID Mifare Module SM130 –

13.56 MHz

SM130 [6] is a compact 28-pin DIP module

that includes all necessary components for

13.56 MHz RFID Mifare System (Reader / Writer),

except only PCB antenna.

The module performs all demodulation,

decoding, encryption and decryption, has 2 inputs

general features and 2 outputs for switches, relays,

etc.

It's also equipped with two communication

interfaces, UART and I2C. The controls are the same

for both communication protocols, but the frames are

different. Our choice fell on UART.

UART

Communication between the host and the

module can be 9600bps, 19200bps, 38400bps,

57600bps or 115200bps.

The module communicates by default to

19200bps. Once the baud rate is changed, the

communication will be successful only with the new

baud rate.

The host will send the first command to the

SM130 module that will perform the operation, then

the module will send back a reply. The host will be

able to analyse the response to see if the operation

was successful or if an error occurred during the

operation.

RFID Evaluat ion Shie ld – 13.56 MHz

This card is an evaluation platform for the

SM130 module. Include a header XBee, a PCB

antenna and a small prototyping area. This tab can

also be used as an antenna for the RFID module

SM130 and represents the natural link with the

platform Arduino, in fact, its layout is designed to be

used as a shield for that card.

RFID Tag - Transparent MIFARE 1K

It is an RFID tag, which follows the basic

guidelines within the standard MIFARE 1K [7]. The

tag has 1K of memory, and data can be written and

read by a compatible device. Its label is transparent

and has a diameter of 25mm and an overall thickness

of about 0.7 mm.

Basically it is only a memory device, whose

storage area is divided into 16 sectors with 4 blocks

of 16 bytes each, with simple security mechanisms

for controlling access. They are based on ASIC and

have a limited computing power.

Mobile Device

The mobile device (iPhone – iPod Touch –

iPad) must be able to communicate with the

hardware already described (Arduino – SM130 –

Evaluation Shield). The easiest way is a serial

connection between iPhone and Arduino. The

Arduino board has already integrated a serial

interface accessible via pins 0 and 1 (respectively

Reception and Transmission).

Each Apple mobile device is equipped with a

connector in its lower part, called Dock Connector.

Dock can be accessed via the serial interface

of the Apple device exposed from pins 12 and 13

(respectively Serial Serial Tx and Rx) of the

Connector.

At this point of our work we found the

following issues: individual connector pins are

difficult to reach, the iOS operating system does not

allow access to FileSystem and is impossible to

manage the communication on the serial port.

For this reason it was used a small board

called iPodBreakOut [8], consisting of a standard

male connector for connecting to Apple's Dock and a

PCB that "carries" the connections for each pin.

For correct operations have been connected the

following pins:

 pin 12 from iPodBreakOut to Arduino RX;

 pin 13 from iPodBreakOut to Arduino to

TX, via a resistor of 1 K (so as to bring down the

voltage from 5V to 3.3V);

 pin 16 from iPodBreakOut to GND.

III. MIFARE SOFTWARE

MIFARE Software is composed by four

different component. In this chapter we start to

analyze the communication and the interaction

protocols between them:

 MIFARE-A130, Software designed to

manage the HW components;

 iMIFARE, an user interface software for

mobile devices;

 MIFAREAdmin, an admin interface;

 MIFAREServer, a PHP server used to

help the user and the admin querying a remote

database.

Communica tions

In order to have a working iMIFARE system,

the components described above need to exchange

information and messages of various kind and nature.

Arduino Uno & Module -SM130

During communications, the host (in our study

case, iMIFARE software via Arduino) will send

commands to SM130, which, analyze the request,

handle it, process it and send a response frame back

to the host.

The host will analyze this frame to check if

there was errors.

Table 1.

Frame used to exchange information

between Arduino and SM130

Header Reserved Length Command Data CSUM

1Byte 1Byte 1Byte 1Byte NByte 1Byte

Following, the request[/response] frame

sent[/received) from the host[/received from the

SM130]:

 Header, composed of a single byte,

indicating the frame start. This value has to be always

0xFF;

 Reserved, a future use reserved byte.

Currently must be equals to 0x00;

 Length, this byte is used to indicate the

payload length (the command field plus the Data

field);

 Command, a single byte to identify the

host requested operation;

 Data, field of length equal to N bytes

representing information to be sent or received from

the reader / writer. Contains at most 16 bytes of

information;

 CSUM, a checksum byte. It can be

calculated by adding all the frame bytes excluding

the header byte.

iMIFARE, MIFAREAdmin & Arduino Uno

The iMIFARE and MIFAREAdmin

applications communicate with the Arduino UNO

and, therefore, with the SM130 module via a serial

connection realized respectively by iPodBreakout and

USB cable. Very Small information packet will be

sent, helping the host selecting the function requested

and, eventually, a few bytes of payload. This kind of

frame will be used either for iMIFARE request or the

Arduino Board response. In the last case, the data

field could contains a message error if the request

operation went wrong.

Table 2.

 Commands between iMIFARE/MIFAREAdmin

and ArduinoUNO

Command Function

T Seek and Read Tag

S Seek for Tag(s)

D Read a Tag

W Write to Tag

V SM130 Version Number

A Antenna ON / OFF

R Reset

iMIFARE/MIFAREAdmin & MIFAREServer

The application for mobile devices and one for

the administrator also require a communication to a

web service that enables users to leverage the data

stored within a remote database. To communicate

with the server we are using the HTTP GET requests.

<URL>?

<PARAMETER_KEY>=<PARAMETER_VALUE>

[&…]

Both the applications send requests to

MIFAREServer, but with different parameters:

 iMIFARE

· START & TAG, notify to the server that

user start viewing an artwork;

· ID, requesting tag information;

· END, notifying to server that an user has

stopped viewing an artwork;

· CLOSE, The user get out of the museum (or

he just close the application);

 MIFAREAdmin

· INS / MOD / DEL, the admin trying to

modify one or more tag inside remote DB;

· READ, read of a tag content;

· VIEW, consulting all the tags inside DB;

· ART, Consulting all the artworks of the DB;

· PEOPLE, Consulting all the people

currently inside musems;

· HIST, analyzing people historical visit;

· STAT, analyzing artwork historical values.

3.1 MIFARE A-130 – ArduinoUNO Appl ica t ion

The Arduino Board realize what commonly

named Open Source Hardware. This board can be

programmed, as the user likes, by programming it in

a C++ similar language, using a set of libraries

owned by Arduino Platform.

Our whole MIFARE A-130 Application is

composed by two modules only:

 a file having .pde extension (tipically,

Arduino source file extension, became .uno in last

versione of Arduino Platform) that filters all the

external requests;

 a C++ class, named SM130. Inside of it

we can find functionality designed by us used to

interact with SM130, connected with Arduino UNO.

Both these components use and reference to a

common library inside Arduino framework used to

implement serial communication also called

SoftwareSerial.

SM130 Class

This class implements almost all the features

exposed by SM130 RFID module.

Send and Receive dat a

Sending and receiving frame from and to

SM130 module via Arduino Board are implemented

with two protected methods (they’re not visibile from

the outsider class, so not directly callable, but only

using public interface methods):

 void sendCommand(byte command, byte*

data, int dataLength);

 byte* receiveResponse(int extLength);

Tag Read e Write

Reading and writing tag content as the tag ID

reading need to implement a specific procedure

(figure 2).

Fig. 2. Memory operation sequence

For consistency and security reason, before we

can get tag informations and tag contents we have to

execute this sequence of operations:

1. SELECT – Select the Tag, this step is

necessary to ensure the presence of tag inside the

reception field of the of RFID antenna reader. We

have to notice that this function execute an anti-

collision algorithm on a firmware level. This factor

can be an advantage in the case you want to approach

to implementate this kind of algorithm, but in our

case has been a disadvantage because we have not

been able to optimize or improve the mechanism of

the collision (the firmware is not editable).

2. AUTHENTICATE, after a tag was

selected among the “read” ones, it’ll needs to use one

of two keys (A Key and B Key) to indicate in which

of the 16 memory block we want to access.

class SM130 {

public:

 SM130();

 ~SM130();

 const char* reset();

 const char* getFirmwareVersion();

 boolean setAntennaPower(boolean on);

 const char* seekTag(void);

 const char* readTag(byte blockID);

 const char* readTagBlock(byte blockID);

 boolean writeTagBlock(byte* info, byte

blockID);

 […]

protected:

 void sendCommand(byte command, byte* data,

int dataLength);

 byte* receiveResponse(int *extLength);

 Tag selectTag();

 boolean authenticate(byte blockID);

 const char* readTagContent(byte blockID);

 boolean writeTagContent(byte* info, byte

blockID);

};

3. MEMORY OPERATIONS, from now on

we can start to execute our memory access operation,

in our study case represented by reading or writing

information inside RFID Tag Memory (1KB).

3 .2 iMIFARE – iPhone Appl ica t ion

The user interface is managed by iMIFARE

application. This is designed to run on Apple’s

operating system devices, especially iPhone or iPod

Touch.

The project can be divided into the following

main sections:

 Menu;

 Map;

 List of Works;

 Guided-Mode;

 Settings.

There are also important components that

allow you to "sync" with other local information

contained in a remote database (figure 3).

Fig. 3. Global scheme with details on mobile application

Guide Mode Sect ion

The Guide Section is one that achieves the

reason for which this software has been implemented.

It allows a connection to the Arduino via the serial

port. We will see in this chapter what are the classes

and libraries used to perform this operation.

Logically, this components has to read a Tag –

when this’s reachable inside the action field of the

reader – and show the related artwork details. In the

described operation both the connection to Arduino

and MIFAREServer connection are used.

Communication with Arduino is used to read

information from the tag, especially, his ID, identifier

assigned directly to the manufacturer, unique in the

world. The system is already developed to also read

the contents of the tag, even though in our case, no

sensitive information is contained within it. Once the

information is taken from the tag, it will be stored

within an ADT (Abstract Data Type) represented by

a class named "Tag".

We realize communication with the server,

mainly, for one reason: to warn the server that a

particular user – identified from a UUID (Universal

Unique Identifier) – is displaying a given work –

identified by a TAG ID. This information allows the

server to start a timer, which serves as a further safety

mechanism in the case where the user has moved

viewing another artwork, but we lost his new request.

This request is called START request.

Opposite to the START message, we can send

another message called END, launched after the

closing of Guide-Mode Function. Another similar

message – CLOSE – allows you to close the logical

session with the server, telling it that you just get out

of the museum or the user has just exited from the

application or he shutted down his device.

Inside Guide MVC (Model View

Controller – Software design Pattern) has a

fundamental importante a class called

Ser ialDevice . This is a C++ class – which can be

included without any compatibility problem inside an

XCode project – which allow to start serial port

operation with our own Apple device. This kind of

operation are normally forbidden inside iOS mobile

operative system, that’s why we JailBroken our

device. Neither the classes and library used for serial

connection are available inside Cocoa Touch iOS

Framework, so, we implemented them relying on an

external and open framework called openFramework

which includes advanced and tested features to

exchange information on a serial bus.

SerialDevice is also a singleton class which

can be accessed by calling the class method:

[SerialDevice sharedDevice]. This class allow the

programmer to use fundamental features to managing

connection and data exchange on a serial port, as you

can see from the SerialDevice header file described

below:

We proceed this chapter analyzing some of the

method implemented inside this class:

 connect, allow to connect to a serial port

represented by the default UNIX File located at path

/dev/tty.iap having a baudrate equals to a 9600bps;

 connectWithPath:(NSString*)path

andRate:(long)aRate, allow the programmer to start a

new serial connection using an UNIX File located at

a given “path“ position and a given speed measured

in bps;

 disconnect, close the opened file used to

connect the Apple device to the serial media;

 flush, force to write into output serial

buffer;

 available, returns the number of bytes

inside input serial buffer;

 readBytes:(NSInteger)length, allow to

read a number of bytes equals to the given value –

length – from the serial port;

 writeString:(NSString*)stringData, writes

“stringData” content on the already initialized serial

file;

 deviceList, return a connected devices list

– actually, a list of UNFIX FILE paths realted to a

serial device;

 saveValues, is related to the

implementations of NSCoding protocol methods.

They allow to store, in a persistent way, all the

parameters related to the serial connection

(devidePath and baudRate). The saved file will have

an iOS tipical extension .plist which is always related

to a file where can be saved standard iOS framework

data types (Foundation) but also custom object,

inside an XML formatted file. In our case this file is

saved into: Documents/SerialPreferences.plist inside

the Application Main Bundle.

3.3 MIFAREAdmin – Adminis tra tor

Inter face

The system administrator has a GUI written in

python language, which provides all the tools

necessary to manage the museum and learn about the

works and visitor statistics.

The management operations include insertion,

modification and deletion of artwork from the db.

The statistics on visitors are divided into two

types, the people currently in the museum and the

history of all the people who have visited it. The

operation is equivalent for both categories. Choosing

the category will be displayed a number of persons

identified by the serial number of the device that

uses. Choosing the person, data will be printed on the

artworks displayed.

The statistics regarding artworks, shown who

is the time spent by people to each work.

For each work, will be calculated the time on

the individual, then, will be added to all visitors in

order to create aggregate statistics. You can also view

the graph with the statistics. For the generation of

graphs was used graphics library matplotlib with

numpy python extension mathematics.

The communication with the central database

is via http request, and a simple parser modelled on

the structures congenial to us processes responses.

3.4 MIFAREServer – The connection

to the db

Informations exchanged during all steps of the

system require a single control and a centralized

repository accessible both from mobile devices both

from the administration. In addition, management of

real-time events, such as the number of visitors of the

artworks, can be optimally only with a mechanism to

keep track of information throughout the

implementation period, thus discarding the possibility

of using temporary sessions.

The repository is loaded from a mysql

database on a remote server and organized into two

tables: Museum and People (figure 4).

The museum table is designed in a

perspective of future developments by inserting fields

geo_x geo_y, that will be used to set and change the

@interface SerialDevice : NSObject <NSCoding>

{

 NSString *path;

 long baudRate;

}

@property (nonatomic, copy) NSString *path;

@property (nonatomic, assign) long baudRate;

- (BOOL) connect;

- (BOOL) connectWithPath:(NSString *)path

andRate:(long)aRate;

- (void) disconnect;

- (void) flush;

- (BOOL) writeString:(NSString*)stringData;

- (NSInteger) available;

- (NSString*) readBytes:(NSInteger)length;

- (NSArray*) deviceList;

+ (SerialDevice*)sharedDevice;

- (void) saveValues;

@end

position of the individual tags, improving the

management of localization.

The people table uses a pair of values as the

primary key: id and location. The first is the UUID of

the iPhone that connects to the database and informs

the system of its position, stored precisely in the

second field. This allows to have a unique record that

maintains the information on the single visit to be

able to calculate the time.

Fig. 4. Museum table and People table

In the case where the user forgets to close the

tab of the work, doing then increase dramatically the

time of access, a timeout of 15 minutes has been

established, after which the mobile device sends the

signal to stop automatically.

The choosen programming language on server

side is PHP, for its qualities of flexibility and

richness of features. The files in question are two:

index.php and admin.php.

The index page manages the connection with

the iPhone, called it, by passing the HTTP request

parameters that do the mysql query; the answers to

the device are provided as XML pages specially

formatted according to the parser built into the

software iMIFARE.

The administrator request, sent by the python

interface, are managed by the admin page and the

answers are written on HTML pages.

A Prac tical Appl icat i on

Let's describe now a complete scenario: the

user arrives at the museum

and begins his tour. The first

thing to do is select the

application iMifare on his

iPhone, wait for loading of

the initial settings and the

connection to the database.

From the main screen

you can select a user guide, a

window to the system settings, the map of the

museum and the list of works (figure 6).

Fig. 6. iMifare museum map

From the map you can see the position of the

works, indicated by a red pin. The user can choose to

click one of these and see which artwork is in the

room of his choice, and if necessary request the

information on the latter, clicking the blue arrow

side.

The user sees a list of artworks sorted by

author, with a thumbnail and a small description

(figure 7).

Fig. 7. Artworks list sorted by author

With a touch on the right arrow brings up a

detail screen with complete description.

At the bottom of the screen an arrow is visible,

that allows you to update the list of works.

The ordering of works can be changed by the

user through the appropriate button, and the options

available are: Author, Period, Movement. In this way

you can create custom routes, selecting only the

topics that interest you.

These operations are connected to a timer that

periodically sends its data to the centralized system.

In this way it is possible to calculate the statistics for

the display of the works.

The entry of a user in the museum causes its

registration in the database, and this offers many

possibilities, in addition to simple statistic as the

UUID is, by definition, unique:

 you can know the position of a user in the

room, and thus follow the movement;

 it is possible to trace the person in the case

where it is necessary, such as a theft or damage of the

works.

IV. CONCLUSIONS

This paper presents a new automated system

for tourist attractions, especially, museum. All the

"MIFARE" system components are based on open

standards and/or open languages, allowing everyone

to use and test all the implemented features.

The solution is also strictly related to mobile

device and smartphone technologies using a mobile

phone as a User Interface to let the user interact in an

easy and practical way with our Applications.

The System Architecture can be set up just by

using a simple Router, creating a LAN inside the

Museum Building or, better, connecting the whole

Museum communication system to the Internet.

Least but not last, this work would also

promote the adoption and use of the RFID

technology in other fields than the common "Stores

Application", which represent the first kind of RFID

scenario nowadays.

REFERENCES
[1] RFID-Based Guide Gives Museum Visitors More

Freedom:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn

umber=5735592

[2] A Systematic RFID Application Platform with Integration
Capability for Tour and Exhibition:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=60

68613
[3] RFID: A Technical Overview and  Its Application to the

Enterprise:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=14
90473

[4] RFId system:

http://etd.adm.unipi.it/theses/available/etd-09172007-215049
/unrestricted/Alessio_Conti_Finale.pdf

[5] Arduino Uno:

http://arduino.cc/en/Main/arduino Board Uno
[6] SM130 13.56 Hz RFID Mifare Read / Write Module

DATA SHEET:

http://sigbed.seas.upenn.edu/archives/2011-12/ Keynote. Pdf
[7] RFID Evaluation Shield - 13.56MHz

http://www.sparkfun.com/products/10162

[8] RFID Tag - Transparent MIFARE 1K (13.56 MHz)
http://www.sparkfun.com/products/10128

[9] iPodBreakOut:
http://www.kineteka.com/PodBreakout-v1.aspx

http://www.kineteka.com/PodBreakout-v1.aspx

