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Abstract 

 

This article mainly reviews the Boltzmann 

machine and its application to data processing tasks 

such as classification, recognition, filtering, etc. First 

part of this survey describes different types of 

Boltzmann machines and deep networks along with 

their main properties. Second part is dedicated to the 

brief review of different applications of Boltzmann 

machine found in scientific literature. 

 

 

I. INTRODUCTION 

 

The recurrent neural networks (RNNs) are a 

general case of artificial neural networks where the 

connections are not feed-forward ones only. In RNNs, 

connections between units form directed cycles, 

providing an implicit internal memory. Those RNNs 

are adapted to problems dealing with signals evolving 

through time. Their internal memory gives them the 

ability to naturally take time into account. The 

presence of feedback between units in RNNs allows 

them to model complex temporal data. Valuable 

approximation results that have been obtained for 

dynamical systems are gathered in [53]. 

The utility of artificial neural network models 

lies in the fact that they can be used to infer a 

function from observations and also to use it. 

Unsupervised neural networks can also be used to 

learn representations of the input that capture the 

salient characteristics of the input distribution, e.g., 

the Boltzmann machine (BM), and more recently, 

deep learning algorithms, which can implicitly learn 

the distribution function of the observed data. 

Restricted Boltzmann Machine (RBM) is a 

type of stochastic RNNs. RBMs have been 

successfully applied in collaborative filtering [13], 

information and image retrieval [51], time series 

modeling [28, 52] and many other areas. 

 

II. BOLTZMANN MACHINES 

 

A neural network called Boltzmann Machine 

was invented by Geoffrey Hinton and Terrence 

Sejnowski [1 – 3] in 1980s. The name comes after the 

Boltzmann distribution in statistical mechanics, 

which is used in the sampling function of the network. 

The Boltzmann Machine is a Monte Carlo version of 

the Hopfield network, a form of recurrent neural 

network proposed by John Hopfield in [4]. Like a 

Hopfield net, a Boltzmann Machine is a network of 

binary units with an energy term defined for the 

network. In a Boltzmann Machine the global energy 

E  is identical in form to the energy of a Hopfield 

network: 
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where ijw  is the connection weight between unit i  

and j ; is  is the state of unit i ,  1,1is   ; ib  

is the bias of unit i . 

The main difference between BM and 

Hopfield network is that BM uses stochastic units 

while Hopfield net is based on traditional 

McCullough-Pitts artificial neuron model. In a BM 

the decision for a unit to switch its state from –1 to 

+1 (or backwards) is probabilistic [5]: 
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where ( 1)p   is the probability of unit is  switching 

its state from –1 (“off”) to +1 (“on”). 

The original updating rule for Hopfield net 

forces each unit to switch into whichever of its states 

makes the total energy of the system lower. As all 

connections between units are symmetric (this is true 

for both Hopfield nets and BMs), it is possible for a 

stochastic unit to make the decision to be “on” of 

“off” locally by computing the energy difference 

E  between it being active and inactive. For the 

unit i  this can be written as follows: 

( 1) ( 1)i i i ij j i

j
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Equations (1) and (3) for simplicity may be 

rewritten without the bias 
ib  by adding a new unit 

0 1s const    with a weight 0i iw b : 

,

ij i j

i j

E w s s  , (4) 

i ij j

j

E w s  . (5) 

A property of Boltzmann distribution called 

Boltzmann factor runs that the energy of a state is 

proportional to the negative log probability of that 

state. By applying this property to the first part of 

equation (3), rearranging the terms and taking the 

exponent to get rid of the logarithm, we get the 

following expression for the probability that i -th 

unit is active: 
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where T  is a parameter that describes the 

“temperature” of the network. The same way as in 

statistical physics, units will usually go into the state 

which reduces the system energy, but occasionally 

they will go into the state which increases the energy, 

just as physical systems sometimes (not often) visit 

higher energy states. The higher is the temperature 

the higher is the possibility for a unit to go into a 

higher energy state instead of a state with a lower 

energy. 

The network is run by repeatedly choosing a 

random unit and setting its state according to the 

formula (6). If the average activation is  of unit i  

stops changing over time, the network is said to have 

reached a thermal equilibrium. It can be proved that 

any stochastic network which always goes downhill 

in some Lyapunov function (the energy term (1) is 

such a function) is guaranteed to reach a thermal 

equilibrium [5]. 

Unlike the Hopfield net, stochastic networks 

such as BM move from state to state without settling 

down into a stable configuration [6]. This means that 

by simply measuring the fraction of the time a BM 

spent in each of its states when it reached thermal 

equilibrium, we could use BM to generate probability 

distributions over various states. This probability 

distribution heavily depends on the connection 

weights of the network. So by carefully adjusting the 

weights we can force the network’s equilibrium 

distribution to be similar to the world distribution. 

Thus, BMs can be used to model data. 

Unlike a Hopfield net, BM has two different 

layers: a layer of visible units and a layer of hidden 

units, see figure 1. Visible units reflect the state of 

BM, visible to the public. The network is presented 

data by setting output values of visible units. The 

same units determine network’s output after the 

network has reached a thermal equilibrium. 

Hidden units are used to capture higher order 

regularities in the data distribution. Indeed, the 

energy function (1) includes only terms involving the 

activation states of pairs of units i js s . Thus, hidden 

units are needed to be able to capture any structure in 

the world probability distribution that is higher than 

second order. 

 

 

 
 

Fig. 1. Graphical model of Boltzmann Machine  

with 4 visible and 3 hidden units 

 

Unfortunately hidden units make training the 

network more complicated. Training data (patterns 

we want the network to reproduce) can be used to 

learn the probability distribution of the states of the 

visible units. But there is no data to train the 

probability of hidden units on. The idea is that the 

network should discover how to use the hidden units 

to best represent the structure of probability 

distribution of patterns. 

 

 

III. LEARNING PROCEDURE 

 

The learning procedure for the BM has two 

phases [6]. In positive phase (Phase+), the visible 

units are clamped to the value of particular pattern, 

and the network is run until it reaches a thermal 

equilibrium. Then Hebbian learning is used:  

the weight between any two units that are both on  

is incremented. This phase is repeated many times, 

with each pattern clamped with a frequency 

corresponding to the world probability we would like 

to model. 

In negative phase (Phase–) the network is run 

freely, without any units clamped. When it reaches a 

low temperature equilibrium the activities of all the 

units are sampled. Enough samples should be taken 

to obtain reliable averages of i js s . Then the so 

called unlearning procedure is performed: the weight 

between any two units which are both on is 

decremented. 

By alternating between both phases with 

approximately equal frequency this learning 

procedure will on average reduce the cross-entropy 

between the network's free-running distribution and 

the target distribution. 

It is obvious that the efficiency of BM depends 

on equilibrium being reached fairly rapidly.  

A simulated annealing algorithm may be used  

to gradually reduce the temperature as the network 

runs to achieve low temperature equilibrium fairly 

fast. 

 

Visible layer 

Hidden layer 



IV. RESTRICTED BOLTZMANN 

MACHINES AND PRODUCTS OF EXPERTS 

 

The main problem with Boltzmann machines 

is that they are difficult to learn. Even with simulated 

annealing it takes quite some time to reach a thermal 

equilibrium. And this equilibrium must be reached 

many times for each training example during each 

training epoch. This problem can be solved by adding 

some restrictions on the general BM structure 

described earlier to form a new network called 

Restricted Boltzmann Machine (RBM). 

RBM is a bipartite undirected graphical model 

with a two-layer architecture [7, 8]. Unlike a general 

Boltzmann Machine, RBM doesn’t allow any visible-

visible or hidden-hidden connections between units 

from the same layer. Only visible-hidden connections 

are present, see figure 2. 

 

 
 

Fig. 2. Graphical model of Restricted Boltzmann Machine  

with 4 visible and 3 hidden units 

 

RBM is sometimes called a Product of Experts 

model (PoE) [9] as it combines a number of 

individual component models (the experts) by taking 

their product. Binary hidden units are such experts, 

and may be also thought of as feature detectors. Such 

an expert (feature detector) fires a +1 to its output 

with probability  

1
P( 1| )

1 exp

j
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v ,  (7) 

where j jh s  is the state of hidden unit j , 

 0,1jh  ; v  is the binary vector representing the 

states of all visible units; i iv s  is the state of 

visible unit i ,  0,1iv  ; ja  is the bias of hidden 

unit j . 

Similarly, the probability that a visible unit’s 

state is +1 will be 

1
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where h  is the binary vector representing the states 

of all hidden units and ib  is the bias of visible unit 

i . 

Finally conditional distributions over visible 

units v  and hidden vector h  are as follows: 

   | ; P |i

i

p W vv h h , (9) 

   | ; P |j

j

p W hh v v , (10) 

where W  is the matrix of connection weights ijw  

between all units. Equation (10) clearly shows why 

RBM is called a product of experts: an RBM is a PoE 

with one expert per hidden unit. 

PoEs may be trained by maximizing the log 

likelihood of the data being generated (reconstructed) 

by the model. Unfortunately, it is a difficult task [9] 

since some of the calculations involved are 

intractable. 

The process of reconstruction of the data by 

the model uses a Markov Chain Monte Carlo 

(MCMC) algorithm called Gibbs sampling. A 

visualization of alternating Gibbs sampling is 

presented on figure 3. At time 0, the visible variables 

denoted by v  represent a data vector or, simply put, 

the input of the neural network. Then the hidden 

variables (experts) h  are updated in parallel with 

samples from their posterior distribution given the 

visible variables. At time 1, the visible variables are 

all updated to produce a reconstruction of the original 

data vector from the hidden variables, and then the 

hidden variables are updated in parallel again. By 

repeating this process long enough, it is possible to 

get arbitrarily close to the equilibrium distribution. 

The correlations 
i jv h  shown on the connections 

between visible and hidden variables are the statistics 

used for learning in RBMs. 

Hinton [9] has shown that RBMs can be 

efficiently trained by minimizing Contrastive 

Divergence. Contrastive Divergence (CD) estimates 

energy function’s gradient, given a set of model 

parameters (synaptic weights ijw ), and training 

data [10]. The time shown on figure 3 can be thought 

of as a number of steps of CD algorithm. CD0 is the 

source data at time 0, CD1 is the first reconstruction 

and CDn is the reconstruction at step n . The simple 

expression for RBM weight updates based on CD 

leaning is 

0 1ij i j i jw v h v h   . (11) 

 

 

V. DEEP NETWORKS 

 

The RBM can serve as a building block for 

more complex and powerful models. Such models 

include Deep Belief Networks and Deep Boltzmann 

Machines. 

Deep Belief Network (DBN) is a probabilistic 

generative model composed of many layers of hidden 

variables (figure 4, left). Each layer captures high-

order correlations between the activities of hidden 

features in the layer below. The top two layers of the 

DBN form an undirected bipartite graph with the 

lower layers forming a directed sigmoid belief 

network [7], as shown in figure 4. 

Visible units 

Hidden units  

(feature detectors) 



The learning algorithm for DBN [7, 11] uses a 

stack of RBMs (see figure 4, right) and proceeds as 

follows. First the bottom RBM is trained with 

parameters 
1W . Then the weights of a 2

nd
 layer 

RBM are initialized to  2 1
T

W W , which 

ensures that the two-hidden layer DBN is at least as 

good as the original one-layer RBM. After that the 

DBN’s fit to the training data may be improved by 

modifying 
2W . Samples 

1
h  from the layer of 

hidden features of the first RBM are used as the 

training data for the 2
nd

 layer RBM. The same steps 

are repeated recursively for all RBMs in the stack, 

with samples of hidden units from one layer used as 

source data for training the next layer. 

Unlike a DBN, Deep Boltzmann Machine 

(DBM) is a graphical model [7, 12] where all 

connections between layers are undirected (see 

figure 4, center). DBMs are interesting for several 

reasons. First, like deep belief networks, DBMs have 

the potential of learning internal representations that 

become increasingly complex, which is considered to 

be a promising way of solving object and speech 

recognition problems. Second, high-level 

representations can be built from a large supply of 

unlabeled sensory inputs and very limited labeled 

data can then be used to only slightly fine-tune the 

model for a specific task at hand. Finally, unlike 

DBNs, the approximate inference procedure, in 

addition to an initial bottomup pass, can incorporate 

top-down feedback, allowing DBMs to deal more 

robustly with ambiguous inputs. 

Training algorithm for DBM is similar to the 

one for DBN and is described in [12]. 

 

 

 

 
 

Fig. 3. Visualization of Gibbs sampling in a RBM 

 

 
 

Fig. 4. Deep Belief Network (left), Deep Boltzmann Machine (center)  

and a stack of Restricted Boltzmann Machines used for learning Deep models (right) 

 

 

 

VI. RBMs for collaborative filtering 

 

Collaborative filtering is a technique used by 

many recommendation systems for information 

filtering and prediction. In 2006 a US online DVD-

rental company Netflix started a competition for the 

best collaborative filtering algorithm to predict user 

ratings for films based on previous ratings made by 

different users. This competition, called Netflix Prize, 

gave rise to many new recommendation algorithms 

among which was RBM-based collaborative filtering 

algorithm [13]. 
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The use of RBM as a collaborative  

filtering algorithm became very popular [14 – 17]. 

The reason behind this popularity is the following. 

RBM is a really good feature extractor, it essentially 

performs a binary version of factor analysis. Some 

comparison results suggest that RBM can outperform 

traditional factor analysis methods such as Singular 

Value Decomposition (SVD) [13]. Nevertheless 

experiments have shown [16, 17] that for the best 

results RBMs must be used in conjunction with other 

prediction algorithms in a blended solution [18, 19]. 

All teams with high scores in Netflix competition 

used RBMs for collaborative filtering in their blends. 

A good overview of collaborative filtering 

algorithms based on RBMs is presented in [14]. 

Application of RBMs to Netflix prize is described in 

detail in [13, 18]. 

 

 

VII. MODELING DATA USING RBMs 

 

RBMs and DBNs are very good universal 

approximators. It can be shown [20], that any 

distribution p  on the set  0,1
n

 of binary vectors 

of length n  can be arbitrarily well approximated by 

an RBM with 1k   hidden units, where k  is the 

minimal number of pairs of binary vectors differing 

in only one entry such that their union contains the 

support set of p . If contrastive divergence (11) is 

run for a long time, the resulting visible vector v  

represents some fantasy data, sampled from the 

distribution p  learned by RBM (see figure 3). By 

running the Gibbs sampling in RBM for some time it 

is possible to generate a random approximation to the 

original data used to initialize the Markov chain. So 

RBM may be used for modeling complex 

multidimensional data, especially when it is difficult 

to learn the analytical form of data distribution 

function. 

A good example of modeling images of 

handwritten digits with RBM is described by Hinton 

et al in [21 – 24]. The images are taken from MNIST 

database [25]. The network learns a generative model 

(DBN) with several layers and has the structure 

shown on figure 5.  

 
Fig. 5. Deep Belief Network used for generating images of 

handwritten digits and for classification 

A modified version of RBM called Continuous 

Restricted Boltzmann Machine (CRBM) can perform 

reconstruction of continuous data [26, 27]. It has 

good results on nonlinear data, both artificial and real. 

In [26] an application of CRBM to ECG modeling 

and analysis is shown. The hidden units of CRBM 

can underpin a simple novelty detector such as a 

single layer perceptron. Another application of 

CRBM to real data from a pH sensor is demonstrated 

in [27]. CRBM is shown to perform better than 

multilayer perceptron and self organizing maps. 

A generative model for human motion is 

introduced in [28]. It is based on the idea that local 

constraints and global dynamics can be learned 

efficiently by a conditional Restricted Boltzmann 

Machine. Once trained, such models are able to 

efficiently capture complex non-linearities in the data 

without sophisticated pre-processing or 

dimensionality reduction. The model has been 

designed with human motion in mind, but should 

lend itself well to other high-dimensional time series. 

Another expansion of RBM called Recurrent 

Temporal Restricted Boltzmann Machine (RTRBM) 

is shown to generate videos at pixel level [29]. It is 

also shown to be good at generating motion capture. 

Yet another RBM modification called Implicit 

Mixture of Conditional Restricted Boltzmann 

Machines (imCRBM) is used in human pose 

tracking [30]. It allows one to learn models from 

many different types of motion and subjects using the 

same set of latent variables. The imCRBM is 

suggested to be useful for time series analysis beyond 

the tracking domain. 

 

 

VIII. CLASSIFICATION AND 

RECOGNITION WITH RBMs 

 

Application of RBMs to classification tasks is 

as wide as its application to data modeling. In fact if 

it is possible to build a model consisting of one or 

more levels of hidden variables and that model is 

good at reconstructing data from visible units, than it 

will be possible to use those features from latent 

variables for classification. 

In [27] a simple single layer perceptron is 

appended to the layer of hidden units in CRBM for 

classification. A DBN model for classification and 

modeling of images of hand-written written digits 

proposed by Hinton et al [21] is shown on figure 5. 

DBN can also be applied to speech recognition 

problems [31 – 33]. Image recognition with DBNs is 

not limited by MNIST database, but includes a 

NORB dataset for 3D object recognition [12, 34], a 

FERET database for face recognition [44] and a 

CIFAR dataset of tiny colour images for 

classification [35, 36]. Other uses of RBMs and 

DBNs as generative models and classifiers include 

document retrieval and text processing [22, 37]. 
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IX. CONCLUSION 

 

Many variants of RBMs, DBNs and DBMs 

and their generalizations to exponential family 

models [50] have been successfully applied not only 

for classification tasks [11, 38, 39], but also 

regression tasks [40], visual object recognition [41 –

 44], dimensionality reduction [22, 23], information 

retrieval [37, 45, 46], modeling image patches [47], 

extracting optical flow [48], and robotics [49]. 

Research on neural network models with deep 

architectures such as Boltzmann machine is making 

progress all the time. 
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