

DESIGN AND IMPLEMENTATION

OF A CLOCK SYNCHRONIZATION ALGORITHM

FOR STM32L MICROCONTROLLERS USING IEEE1588 PROTOCOL

AND POWER CONSUMPTION MEASUREMENTS

Luca Marturana, Sebastiano Milardo, Rosario Villari, Alessandro Sapienza

Università degli Studi di Catania, Dipartimento di Ingegneria Elettrica Elettronica e Informatica

Catania, Italy

{lucamarturana,sebastiano.milardo,rsrvillari,alexsapienza}@gmail.com

Abstract

Clock synchronization is a very important

feature in a wireless sensor network. This paper

describes a system based on three STM32L

microcontrollers performing clock synchronization

using three XBee modules. This article also involves

a power consumption measurement for the

implemented system.

Index Terms: clock synchronization, STM32L,

power consumption, XBee, ZigBee

I. INTRODUCTION

The need for a common time has always

existed in automated systems. This need is present in

both wired and wireless systems. In fact the clocks

trend, for various reasons, to drift from the reference

clock. Small environmental changes, such as

temperature, pressure and voltage of the battery may

also increase this deviation. Implementing a clock

synchronization algorithm is therefore an aspect that

should not be underestimated. IEEE 1588, commonly

known as Precision Time Protocol (PTP), offers a

solution to the problem described above.

The goal of this project is the creation of a

system composed of three STM32L microcontrollers,

which will perform clock synchronization with the

accuracy of the order of microseconds,

communicating via the serial interface through three

XBee modules. Our system will also measure the

power absorbed by the XBee modules thanks to an

appropriate circuit.

II. SOFTWARE IMPLEMENTATION

1) IEEE 1588

Released in November 2002 (based on the

work done by John Eidson [1] at Agilent Labs, IEEE

1588 specifics the hardware and the software needed

to enable network devices to synchronize their clocks

with the master.

The standard is applicable to LAN

communications that support multicast. IEEE 1588

was initially based over Ethernet, but is not limited to

it. In fact we implemented PTP on a wireless sensor

network [2].

IEEE1588 protocol consist on a Master / Slave

architecture, which is based on the exchange of a

series of messages between a master clock and slave

clocks. IEEE 1588 is able to synchronize systems

with a clock that can vary in accuracy, resolution and

stability, reaching an accuracy in the order of

microseconds requiring a minimum exchange of

messages and few computational resources [3, 4].

To achieve such a precision, it requires that the

timestamps used must be generated by specific

hardware as close as possible to the physical medium.

It is important to note that this protocol is able to

operate autonomously without maintenance. The

entire network is structured according to a

master/slave model. The master acts as a coordinator

and distributes the clock.

Fig. 1. IEEE 1588 protocol diagram

The master clock sends a message called

"Sync messages", recorded at the instant of time in

which such submission is made.

This value is transmitted in a second message

called "follow-up message". The receiver uses its

local clock to record the arrival time of the "Sync

messages" and compares it with the time reference

contained in the "followup message". The difference

between these two values of time represent the

propagation delay and the slave’s offset.

The propagation delay is calculated by the

receiver node by sending a message called

"DelayRequest message" and recording the sending

moment of this message. When the master clock

receives a "DelayRequest" message, it records the

arrival time and places it in a message called

"DelayResponse message" and sends it to the slave

clocks.

At this point, the slave clocks can change their

clock in accordance with the master clock, having all

the necessary information.

Because of the independent divergence of the

clock involved in this procedure, it requires a

periodic repetition to keep the clocks synchronized.

III. HARDWARE IMPLEMENTATION

To implement the proposed system we used:

 3 STM32L-Discovery boards;

 3 XBee modules with their relative

SimpleBoards;

 1 PIC16F785 from MicroChip;

 1 MAX232 adapting circuit;

 4 breadboards;

 1 USB adapter for XBee configuration;

 1 32 segments DATAVISION display;

 1 serial-USB adapter;

 various Wires, Resistors and Capacitors.

1) STM32L-DISCOVERY

The STM32L-DISCOVERY is a board based

on the STM32L152RBT6 microcontroller, including

a STLINK/V2 link and integrating a debugging

interface, a LCD, two LEDs, two push buttons, a

linear touch sensor, and four touchkeys. The

STM32L152RBT6 microcontroller is a low power

32bit MCU has 128 MB Flash, 16 MB RAM, 4 KB

of EEPROM, RTC, LCD, timer, USART, I2C, SPI,

ADC, DAC and comparators.

2) ZigBee

ZigBee is a standard developed by the ZigBee

Alliance, used in industrial environments and WSN

to allow communications between low power

consumption devices. It uses the 802.15.4 standard in

the physical and MAC layer and defines a custom

network and application layer.

The standard defines three different working

frequencies: 868/915 MHz, using a BPSK

modulation, and 2.4 GHz band, which can reach a

data rate of 250 Kbits/s using a OQPSK modulation.

In the 2.4 GHz band, the standard 802.15.4

defines 16 channels of 2 MHz each. The modulation

used at 2.4 GHz is an Offset Quadrature Phase Shift

Keying (OQPSK).

3) PIC16F785

The PIC16F785 from Microchip is a 8-bit

flash memory Pic. The main feature of this

microcontroller is the presence of two operational

amplifiers used to estimate the voltage and current on

the Xbee. Among the other characteristics we also

have the ability to work at 2.0 or 5.5V. This micro

also offers the nanoWatt technology to minimize

consumption, A/D converters with 10 bit resolution

and 2 high speed analog comparators [5].

Fig. 2. Overview of the implemented system.

1 - Slaves, 2 - Master, 3 - Power measurement circuit

Connecting the development board to the

XBee module is straightforward. In the EXT 5V pin

we can find the voltage coming from the USB port,

the GND pin is connected to the ground lines of the

breadboard instead. The XBee module is then

powered by the VIN pin and communicates with the

STM32 using a USART port. The USART3 interface

has been used. It transmits on PC10 (Transmission)

and PC11 (Reception) pins, which are connected

respectively to DIN and DOUT pins of the XBee

module. To connect the XBee module with the

breadboard an intermediate card having the same pin-

spacing is needed. The intermediate card also

converts the input voltage of 5V to 3.3V which are

used by the XBee module. The power measurement

circuit was built on a separate breadboard. It uses a

PIC16F785 integrated controller and a MAX232

adapting circuit to convert a UART output to a

RS232 output. This circuit implements a

voltamperometer that allows to show the values of

voltage and current. Four connectors link the

voltamperometer to the remaining circuit. The first

two should be placed in parallel to the voltage to be

measured, the latter two should be placed in parallel

to a resistance called “shunt” which is in series with

the circuit from which the current is measured. The

shunt resistor must be properly sized. In this

particular case we used a 1 Ohm resistor.

Max Input Voltage 14.4 V

Min Input Voltage 14.06

mV

Max Input Current 1.09 A

Min Input Current 1.06

mA

The XBee module can work in the so called

“transparent mode”. The STM controller simply

sends data to the USART port and the Xbee module

will route it to the proper destinations.

Communications over USART port are really simple

to use, except two cases:

 the serial port needs to transmit a byte and

wait until it was sent broadcast before moving to the

next byte;

 data can be received at any time.

To solve these two problems you can use the

"active waiting" mode or the interrupt mode. In the

first mode, the microcontroller keeps asking to the

serial port if it has got something to work on. In the

second mode the microcontroller is notified via

interrupt when transmitting events occur and executes

the code required to manage them. In our case we

used the second mode.

We will now see the code for PIC16HV785.

The implemented firmware initializes various

registers, set the clock speed and initialize the

display. It enables the internal operational amplifiers,

then enters an infinite loop that reads the voltage and

current through AN0 and AN2. Finally, the

microcontroller converts the values and displays it on

the LCD. A USART port has been implemented on

pin 3 using a technique called “bit banging”. This

function is used to write a single character on the

serial port, and using a for loop it sends all data to

the MAX232 integrate.

A major issue concerned how to verify the

correctness of system operations. It was initially

thought to show the master clock time on the LCD

devices. This approach, however, was not valid

because it introduced too many delays. Subsequently

it was thought to generate a square wave using the

clock signal. In this way, the synchronization

accuracy was shown by the phase difference between

these two waves. This method showed a better

accuracy but it was not possible to extrapolate data

for a statistic use. Finally we sent a cable interrupt on

pin PA0 using a device that periodically sent this

signal.

IV. DATA ACQUISITION

The data to be acquired are the master and

slave clock and the power consumed by a XBee

module [6].

As regards the clock synchronization, it was

decided to use a further STM32 board as a reference

node. In other words, this node is responsible for

periodically send a signal on pin PA0 both on master

and slaves, telling to sample the value of their clocks.

It was decided to send such signal with a period of

250 ms. There were performed four runs of

measurement, corresponding to different periods of

synchronization between master and slaves (2, 4, 8

and 16 seconds). For each run 400 samples were

taken.

The purpose of these measurements is to

estimate the skew between master and slaves and the

drift rate.

To measure the power consumption, it was

chosen to sample the values of voltage and current

every 20 ms. Then their product is transferred to a PC

through a serial interface.

In this case it was decided to make two

measurements. The graphs obtained are shown in the

figures below.

A. Calculation of the drift

Because of the excessive difference between

clock frequencies the drift correction was performed

offline [7].

From the data collected we represented two

curves that show the evolution of the master and

slave clocks. The trend of the slave, because of

synchronizations, has a saw-tooth behavior. The

calculation of the drift has been carried out using this

formula:

To create the graph that shows the corrected

value of the clock we used the following formula:

B. Power Consumption

The following graphs regard power

consumption [8].

V. CONCLUSION

This paper has presented the implementation

of a synchronization system. We used the IEEE1588

protocol with good results. The obtained accuracy is

in the order of 1,025 ms every second. While power

consumption measurement returned an average value

of about 54,24 mW, approximately 300 mW during

transmission periods and 4 mW in idle. The results

obtained through measurements have shown that this

system is ready for real applications.

REFERENCES

[1] Mirabella, O.; Brischetto, M.; Raucea, A.; Sindoni, P.; ,

"Dynamic Continuous clock Synchronization for IEEE
802.15.4 based sensor networks," Industrial Electronics,

2008. IECON 2008. 34th Annual Conference of IEEE , vol.,

no., pp.2438-2444, 10-13 Nov. 2008 doi:

10.1109/IECON.2008.4758339

[2] Mirabella, O.; Brischetto, M.; Raucea, A.; , "Evaluation of
clock synchronization protocols for Wireless Sensor

Networks," Wireless Days (WD), 2009 2nd IFIP , vol., no.,

pp.1-5, 15-17 Dec. 2009 doi: 10.1109/WD.2009.5449682
[3] Mirabella, O.; Brischetto, M.; Raucea, A.; Bannò, F.; Caruso,

N.; , "Improving the Dynamic Continuous Clock

Synchronization for WSNs," IECON 2010 - 36th Annual
Conference on IEEE Industrial Electronics Society , vol., no.,

pp.2126-2133, 7-10 Nov. 2010 doi:

10.1109/IECON.2010.5675292
[4] Eidson, J.; Kang Lee; , "IEEE 1588 standard for a precision

clock synchronization protocol for networked measurement

and control systems," Sensors for Industry Conference, 2002.
2nd ISA/IEEE , vol., no., pp. 98- 105, 19-21 Nov. 2002 doi:

10.1109/SFICON.2002.1159815

[5] Yussoff, Y.; Abidin, H.Z.; Rahman, R.A.; Yahaya, F.H.; ,
"Development of a PIC-based wireless sensor node utilizing

XBee technology," Information Management and

Engineering (ICIME), 2010 The 2nd IEEE International

Conference on , vol., no., pp.116-120, 16-18 April 2010 doi:

10.1109/ICIME.2010.5477666

[6] Hyuntae Cho; Hyunsung Jang; Yunju Baek; , "Time
synchronization via clock skew correction on ZigBee

networks," Information and Communication Technology

Convergence (ICTC), 2010 International Conference on ,
vol., no., pp.137-138, 17-19 Nov. 2010 doi:

10.1109/ICTC.2010.5674702

[7] Cox, D.; Jovanov, E.; Milenkovic, A.; , "Time
synchronization for ZigBee networks," System Theory, 2005.

SSST '05. Proceedings of the Thirty-Seventh Southeastern

Symposium on , vol., no., pp. 135- 138, 20-22 March 2005
doi: 10.1109/SSST.2005.1460892

[8] Ascariz, J.M.R.; Boquete, L.; , "System for Measuring Power

Supply Parameters with ZigBee Connectivity,"
Instrumentation and Measurement Technology Conference

Proceedings, 2007. IMTC 2007. IEEE , vol., no., pp.1-5, 1-3

May 2007 doi: 10.1109/IMTC.2007.379344

