AN INDOOR WIRELESS SENSOR NETWORK USING MOTEVIEW DEVELOPMENT KIT

Marco Gattuso, Mario La Rosa

Kore University of Enna Enna, Italy

telematiclab@unikore.it

Abstract

Smart devices like personal computers, smartphones, tablets, radio identification systems and others are increasingly used in everyday life. This is due to technology advances in Micro Electro-Mechanical Systems (MEMS) and digital electronics fields. In this scenario, Wireless Sensor Networks (WSNs) are more and more used in several and heterogeneous contexts (e.g. home automation, health and process control systems). Furthermore, the design simple protocols of new and wireless telecommunication systems allow to create cheap architectures to easily monitor harsh environments. The main aim of this paper is to show how to create a WSN using a development kit.

Keywords: Wireless Sensor Networks, ZigBee, WSN Design

I. INTRODUCTION

In the last years, the use of sensors in home and industrial automation is rising, supported by IEEE 802.15.4 standard protocol [1] for low-rate wireless personal area network (LR-WPAN). A Wireless Sensor Network (WSN) is composed by small programmable Motes equipped with different devices in order to detect several parameters and communicate with other Motes. Each mote main task is to send data detected to a gateway that processes information received. WSNs design has to satisfy some important characteristics:

 scalability: capacity of system to dynamically manage network topology;

 low energy consumption: it is necessary to reduce energy consumption to prolong life cycle of each node;

fault tolerance: the system have to quickly react when malfunctions occur;

- quality of Service (QoS): latency, data integrity, security and more;

 low cost: sensor nodes are really cheap so it's possible to configure a WSN without excessive costs;

- self-configuration: it is an important feature that reduces any outside operation on the network.

IEEE 802.15.4 standard provides the physical and MAC layer. The physical layer deals with transmission and data reception services, radio interface management using the Energy Detection module (ED), Link Quality Indication module (LQI) and Clear Channel Assessment module (CCA). The frequency bandwidth used to communicate is the Industrial Scientific and Medical (ISM). The MAC layer offers several functions to create and manage a Personal Area Network (PAN) defining a control frame and using CSMA/CA to ensure channel access. The MAC layer also supports security algorithms, correction acknowledge systems and error mechanisms. In general, a WSN can be organized in three different network topology:

- Mesh: each node can communicate with each other;

- Tree: sensor nodes are organized in a hierarchic structure;

Star: each node is directly connected to a central node.

Flexibility makes WSNs suitable for different applications like traffic monitoring [2], industrial control process [3] and environmental applications [4] to mention some. This paper is organized as follow: section II describes technologies know in literature for WSN purposes. In section III, the environment used to design and implement a WSN is shown, while section IV shows a case study focused on an indoor application. Finally, section V summarizes the papers and proposes some possible future works.

II. RELATED WORKS

Most important solutions known for WSNs are Bluetooth [5], IEEE 802.11 [6] and the recent WirelessHART [7] standard. Bluetooth is suitable for Wireless Personal Area Network (WPAN) characterized by not many nodes. The 802.11 standard is the most used for wireless communication but it does not provide a mechanism to ensure low power consumption. WirelessHart is a protocol based on IEEE 802.15.4, used for mesh networks. Otherwise, it's not flexible and hardly adaptable to dynamic topology changes. Another protocol, based on IEEE 802.15.4 standard, is ZigBee [8]; the aim of this protocol is to create a network and application layer providing routing strategy, network management and execution of MAC commands at higher layer with low power consumption. ZigBee's application layer is composed by the driver and the code inside the ROM memory. The modern generation of sensor nodes can use different operating system like Contiki [9], Nano-RK [10] and TinyOS [11]. Contiki is a multitasking operating system used for old architectures and embedded systems. It has been developed in C language for 8 bit microcontrollers and it is characterized by a particular TCP/IP stack (uIP). Nano-RK is a real-time oriented OS used on sensor nodes with particular hardware. Its MAC layer provides CSMA/CA and a B-MAC mechanism to ensure channel access. Finally, TinyOS is an open source OS suitable for most kind of sensor nodes. It is event based and completely no-blocking and it provides several libraries, written in NesC language, connected directly to the source code.

III. DEVELOPMENT ENVIRONMENT

In this work, several motes with IEEE 802.15.4 technology have been used. We worked on TinyOS to show a simple WSN in home application [12]. In particular hardware components used are:

- IRIS mote (XM2110) [13]: it can transfer data at 250 Kbits/sec over 2.4GHz like IEEE 802.11;

 MTS300 sensor board [14]: equipped with light and temperature sensor, a buzzer and a microphone;

- MIB520 base station [13]: it is an hardware interface to connect the IRIS mote to the computer through a USB serial port.

In order to implement the WSN, we used MoteWorks [15], a platform which provides an interface to simplify creation and monitoring of a WSN. Main software used are MoteConfig [16] and MoteView [17]. The first one provides a simple GUI to program Motes while the second one consists of an intuitive interface to create and manage the network.

At first, we have to program each Mote. MoteWorks provides two firmware to program gateway and simple node respectively. The gateway firmware is written to implement needed functions to:

gather data coming from other nodes;

- send information detected to the computer in which MoteView is running.

Simple node firmware provides data sensing and multi hop routing. We used MoteConfig to program each node, as shown in figure 1.

Ø MoteConfig					
File Settings Help					
Local Program Remote Proj	gram				
Select File to be Uploaded	£				
C:\Program Files\Crossb	iow\MoteView\xmesh\mica2\	XMeshBase_903_hp.ex	e		Select.
Platform Type Mica2	Radio Band 916		XMesh Type XM	1ESH2 HP	
Addresses MOTE ID 0	- Hex	C Auto Inc	Route Update:		Sec
GROUP ID 100	Hex		Packet Size	55	Bytes
RF Power 255 RF Channel CHA		dBm 3.018 MHz	Payload Size	48	Bytes
Read Fuses Clea	ar Text View Details		Program	OTAP Enable	Stop
Platform: 1 Node (D: 125 Packet Size 55 Base Station: 1 XMesh Power: 144 CPU Clock: NAA XMesh Route Update: 3600 Frequency: 0 RF Power: 259 Combination: 2006	10	Device: mit610: Per			4

Fig. 1. MoteConfig GUI

Once all Motes have been programmed using MoteView, we can collect data from all nodes, saving information in a PostgreSQL database. Through MoteView we can monitor gathered data, as shown in figure 2. It's also possible to graph histogram and view network topology.

	Noc		1.	-	-												
- 1	Id I	Name	Deta		mand Che	rta Health	Hatogram	Scatterplot	Tapology								
	00	Galencer	Node							_						-	
	01	Node 1		Id A			ta forwarde		retries							ost parent_re	
	02	Note 2	- II *	1	5.89 %	25.84 %	2.82 %	71.34%	84.99 %	2.6 v	0 mAter	131	0.%	0.%	1279	217	8/31/2016
				2	7.92 %	42.93 %	55.85 %	14.05 %	2.8 %	2.8 v	0 mAHr	131	100 %	93.33 %		229	8/31/2016 8/23/2016
- 44	03	Node 3		2	0.47 %	97.54 %	0 %	2.40 %	0.83 %	2.8 V	0 mAper	131	13.33 %	100 %	40	229	8/31/2016
	04	Node 4		2	5.5.%	17.51 %	48.73.55	3.75.55	1.67 %	2.7 4	0 mahir	131	46.67 %	92.33 %	10	219	6/31/2016
	05	Node 5		2	3.46 %	14.32 %	40.73 %	3.73 %	4.28 %	2.7 4	0 mane	131	40.07 %	100.%	2	2219	B/31/2016
	05	Node 6		2	5.43 %	48.58 %	31.12 %	20.3 %	3.08 %	2.6 v	0 million	131	80.76	93.33 %	11	233	8/31/2016
	07	Node 7		-	10.14 %	87.51 %	0.69.%	3.8.36	5.09 %	2.9 4	0 million	131	100 %	92.33 %	14	221	8/31/2016
				-	14.0 %	59.09 %	37.25 %	3.65 %	4.09 %	2.9 4	0 mAter	131	100 %	93.33 %	13	213	8/31/2016
	08	Node 8		30	8.07 %	68.86 %	24.65 %	5.78 %	7.58 %	2.5 4	0 mater	131	86.67 %	93.33 %	15	208	8/31/2016
	05	Node S		11	9.18 %	79.05 %	16.34 %	4.61.%	4.58 %	2.7 4	0 mainte	131	100 %	93.33 %	19	222	8/31/2016
	10	Node 10		12	3.04 %	28.13 %	65.98 %	7.88 %	6.75 %	2.6 v	0 mAHr	131	93,33 %	80 %	15	216	8/31/2016
	11	Node 11		13	2.47.%	35.3 %	44.34 %	20.34 %	8.93 %	2.6 4	0 million	131	65.67 %	80.55		210	8/31/2016
				14	2.23 %	29.57 %	39.75 %	30.7 %	6.92 %	2.6 V	0 mAhtr	131	85.67 %	85.67 %	11	223	6/31/2016
	12	Node 12		15	5.03 %	44.02 %	48.8 %	7.19 %	12.94 %		0 mAber	131	40.55	85.57 %	18	211	8/31/2016
	13	Node 13															
	14	Node 14															
	15	Node 15															
			4														>
				06 12	ID 11 AM				Cut	ment Tim					0/11/2000	11.57.12 AM	

Fig. 2. MoteView Screenshot

An important feature of MoteView is the possibility to manage different alarms. Each alarm must be defined as condition of data detected. If an alarm situation occurs, the software will notify the event through a pop-up windows or an email.

IV. CASE OF STUDY

The network is composed by 9 sensor nodes and a gateway connected to a computer. Sensor nodes communicate each other and send radio messages to a base station connected to a PC. The multi hopping feature allows to extend the radio communication range to cover wide area network. Data messages can be delivered to one or more nodes which will forward information to the gateway. In our scenario, we implemented a WSN to monitor light and temperature in different rooms in a home automation context. Figure 3 shows network topology and, at the same time, light information detected.

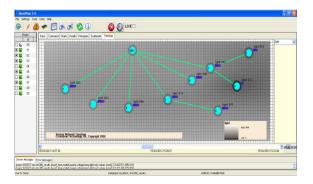


Fig. 3. Topology of the network

Observing the topology, we can see how some nodes can't communicate directly with the gateway. So, they have to connect to an intermediate node to reach the gateway. Furthermore, figure shows the light values in gray scale, where dark color represents low light values. In figure 4, temperature gathered values are shown.

ld.	xdes Nase	Date Connard Chats Health Hi	stogram Scatterplot Topology				
00	Gateway Node 1						taru 45,22
01	Node 1 Node 2						
00	Node 3					temp:23,620	
00	Node-4	-					
15	Node 5	-			terro 2	1120	
06	Node 5	lang 23,13	x /				terrp :23,400
07	Node 7						
- 19	Node 8		Heng 24,530		lemp :22,310		
10	Note 3			temp (20,210		terna 22.2	*
		Energy Surveys Lang	9. Crewight 2005			terrp	No.1
		<					tritter of
		15/03/2012 14:57.36		15/03/20121	4.57.36		15/83/201
ey INSERT # CACOUST 15 T ey INSERT # ey INSERT #	7.42] Senal Source 9 to mts300_results (er to mts300_results (er to etc.300_results (er	ull, sine roded parent vellage terp light nic fag bad, oc ull, sine rodeid parent vellage terp light nic ull, sine rodeid parent vellage terp light nic ull, sine rodeid parent vellage terp light nic ull sine rodeid parent vellage terp light nic	values (novel):9.2,422,478,968,421) values (novel):9.0,420,454,994,461) values (novel):6.4,420,453,954,443)				

Fig. 4. Temperature value

Red indicates high temperature values while green represents low values detected. In particular, node 1 (red border) is placed near a source of heat, and manages an alarm if data detected exceed a threshold value. Figure 5 shows data collected through the whole network and saved to a PostgreSQL database.

🧐 Mot	eView 2	.0							
File Se	ittings T	ools Units Help							
Ş	\$	🦺 🤛 [1		2				🚺 LIVE 🗹
	No	odes	Dat	a (ommand C	harts Health	Histogram	Scatterplot	Topology
	ld	Name	Nor	le Da					
- 1	00	Gateway		Id		temp	light	mic	Time
- 🕰	01	Node 1	•	1	2.96 V	46.11 ⊂	160	433	15/03/2012 15.21.08
- 🕰	02	Node 2		2	2,96 V	22,31 C	858	420	15/03/2012 15.21.08
122	03	Node 3		3	2,94 V	22,72 ⊂	897	407	15/03/2012 15.21.10
- 22	04	Node 4		4	2,89 V	23,54 C	866	407	15/03/2012 15.21.10
	05	Node 5		5	2,9 V	23,05 C	842	417	15/03/2012 15.21.10
-				6	2,98 V	23,37 ⊂	849	411	15/03/2012 15.21.10
_ 😜	06	Node 6		7	2,83 V	24,77 ⊂	995	415	15/03/2012 15.21.10
- 22	07	Node 7		8	2,98 V	22,8 ⊂	887	406	15/03/2012 15.21.08
7 📰	08	Node 8		9	2,97 V	22,23 ⊂	864	416	15/03/2012 15.21.10
	09	Node 9							

Fig. 5. Data table

Information saved for each node are voltage, temperature, light and sound. MoteView measures also nodes communication parameters like: transmitted and received signal power, packets loss percentage and forwarded packets percentage. If we need to know the percentage of the packet with a fixed value, it is possible to create a histogram as shown in figure 6.

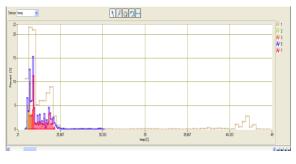


Fig. 6. Histogram value

V. CONCLUSIONS AND FUTURE WORKS

In this paper, WNSs design for indoor applications, using the MoteWorks platform, has been shown. The main advantage of this platform is the simplicity of use through which is possible to create a WSN perfectly working, monitor a given area and store information into a database. Now we are working to test network performances in an industrial application with real-time requirements.

REFERENCES

- [1] IEEE 802.15.4, http://www.ieee802.org/15/pub/TG4.html (last access 24 February 2012)
- [2] R.K. Megalingam V. Mohan A. Mohanan P. Leons R. Shooja, "Wireless Sensor Network for Vehicle Speed Monitoring and Traffic Routing System", Mechanical and Electrical Technology (ICMET), October 2010
- [3] A.A. Abed et.al, "Building an HMI and demo application of WSN-based industrial control systems", Energy, Power and control (EPC-IQ), May 2011
- [4] Q. Zhang et.al, "Application of WSN in precision forestry", Electronic Measurement & Instruments (ICEMI), August 2011
- [5] Bluetooth Specification Version 3.0 + HS; Bluetooth SIG 2009
- [6] IEEE Std 802.11-2007 for Information technology -Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, C1-1184, June 2007.
- [7] IEC 62591 Ed. 1.0: Industrial communication networks Wireless communication network and communication profiles – WirelessHART (FDIS).
- [8] ZigBee Alliance Home, http://www.zigbeealliance.org (last access 5 March 2012)
- [9] The Contiki OS, http://www.contiki-os.org/ (last access 15 February 2012)
- WikiStart Nano-RK, http://www.nanork.org/projects/ nanork/wiki (last access 16 February 2012)
- [11] TinyOS Home Page, http://www.tinyos.net/ (last access 4 March 2012)
- [12] MEMSIC: Wireless Sensor Networks, eKo, Imote2, MICAz, TelosB, and IRIS Wireless Development Kits, http://www.memsic.com/ (last access 1 March 2012)
- [13] Crossbow, "MPR-MIB Users Manual", Revision A, June 2007, PN: 7430-0021-08
- [14] Crossbow, "MTS/MDA Sensor Board Users Manual", Revision A, June 2007, PN: 7430-0020-05
- [15] Crossbow "MoteWorks Getting Started Guide", Revision D, March 2007, PN: 7430-0102-01
- [16] Crossbow, "MoteConfig Users Manual", Revision A, November 2006, PN: 7430-0112-01
- [17] Crossbow, "MoteView Users Manual", Revision A, May 2007, PN: 7430-0008-05