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ABSTRACT 
 

In this article phase-plane trajectories of 
stochastic processes are investigated. We discuss the 
problems arising when phase-plane trajectories are 
being plotted Then we systematically examine 
trajectories from different probability distributions in 
search for a generalized phase-plane analysis 
approach. Practical application of phase-plane 
method is given in the end of this article. 

 
 
I. INTRODUCTION 
 
Stochastic models of dynamic systems and 

informational processes are based on the theory of 
random processes [1]. Such models are used to 
describe real world processes, i.e. height of the wind-
induced waves, combustion-chamber pressure in an 
engine, Brownian motion of particles, stock market 
fluctuations, miscellaneous artifacts and noises 
arising in data acquisition and transmission devices, 
physiological data such as temperature, pulse, 
respiration, blood pressure and many others. 

Phase space is sometimes referred to as one of 
the most powerful inventions of modern science [2]. 
The reason of such a loud statement is that a simple 
two-dimensional phase space which is often called a 
phase plane provides a way of displaying data in a 
form that emphasizes the dynamic activity in a 
system [3].  

In mathematics and physics the concept of 
phase space is used to describe multiple states of a 
system. A single phase space point describes a state 
of an arbitrarily complex system such as, for example, 
a vehicle, combustion engine, nuclear reactor or a 
human body. The movement of this point is called a 
phase trajectory. It describes evolution of the entire 
system in time. If we accept that system behavior is 
characterized by state )(t  of the system and its rate 
of change is dttdt )()(   then the plane 
 )(),( tt   will be a phase plane (subcase of phase 
space with only two dimensions). 

 
II. RANDOM PROCESS 
 
In probability theory a random function is a 

collection of random variables  SsXs  ,),(  
indexed by parameter s , where s  belongs to an 
arbitrary set S , and X  is a subset of states of a 
random variable )(s  [4], [5]. 

There are many different classification criteria 
for random functions. The most common type of 
classification is based on dimensionality and 
continuity (or discontinuity) of space X  and set S . 
Such classification gives two base classes of random 
functions: 

1. Random series, often referred to as time 
series (set S  is discrete). 

2. Stochastic processes (set S  is continuous). 
Parameter s  most often is interpreted as time. 

Without loss of generality we may define stochastic 
process as  Ttt  ),( , where set T  represents time. 
Parameter set of parameter t  is considered to be 

  ttT 0,  or  btatT  , , in other words 
it is assumed that T  matches either with positive 
semiaxis   ;0t  or with a finite interval  bat ;  
on the time axis. 

 
 

III. PHASE-PLANE TRAJECTORIES OF 
A RANDOM PROCESS 

 
The task of study of peculiarities of the 

random process’ )(t  phase trajectory on phase plane 
 ,  often arises when complex dynamical systems 
are examined. In this approach a random process is 
often visualized as a phase trajectory  tL ,,  on a 
phase plane. Usually the phase plane trajectory of a 
random process carries information about both the 
random process )(t  and it’s dynamics in the form of 
its first derivative )(t  (derivative of process versus 
process plot). Such visualization is sometimes called 
a first-order phase-plane. 

Second-order phase-plane is a plot of second 
versus the first derivative of a random process [6]. 
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More rarely a phase-plot of second derivative versus 
random process is used [7]. 

If multiple signals are observed from the 
system, phase-plane trajectories can be drawn by 
plotting the signals against each other. In fact any 
collection of variables that are linearly independent 
and fully describe the system can be used to define 
the dimensions (or axes) of the phase space. The 
concept of phase space means that the phase 
trajectory can be represented in a 3-D plot with three 
different axes (i.g. the second derivative, the first 
derivative and the random process). 

Although all phase portraits of each sample 
distribution function of a random process are unique, 
the phase portraits of random processes with the same 
distribution function are visually similar. Level 
crossing theory allows for the best way to describe 
these similarities. 

 
 

IV. TIME-SERIES PLOTS VERSUS 
PHASE-PLANE PLOTS 

 
On fig. 1 the relationship between a time-

series plot and corresponding phase-plane trajectory 
is shown. 

 

0

0



 '

T0

0

t

 (
t)

 

 

1

5

8
4

7

103

9

2

L(, ',t)

7

4

3
1

95

8

6 10

2

6

 
 

Fig. 1. Random process )(t  (top) and its phase portrait (bottom). 
 t,, L  is the phase trajectory of )(t  

 
Points 5 and 9 (fig. 1) reflect the process )(t  
upcrossing zero level while the phase-plane trajectory 
crosses the 0  axis from left to right. Point 7 
corresponds to )(t  downcrossing zero level with the 
phase-plane trajectory crossing the 0  axis from 
right to left. Points 1 – 4, 6, 8 and 10 are all local 
extrema of process )(t  which means that the phase-
plane trajectory crosses the X-axes at those points 

with point 2 (minimum value) and point 10 
(maximum value) being the leftmost and the 
rightmost trajectory points respectively. The 
relationship between critical points of process )(t  
and X- and Y-axes crossings of phase-plane 
trajectory makes it easier to retrieve the additional 
information stored in the phase plane and to describe 
this trajectory verbally. 

To minimize the error of estimating the axes 
crossing points of the phase-plane trajectory listed 
above the trajectory needs to be a smooth curve. This 
means that the initial time-series must be converted to 
a smooth curve before the phase portrait is plotted. 
One of the methods widely used for this purpose is 
B-spline fitting [6], [8]. Another approach is to 
increase the sampling frequency either by altering the 
sampling frequency of the device responsible for data 
acquisition (i.g. an ADC) or by resampling the 
original time-series. Altering the data acquisition 
device’s sampling frequency in many cases may be 
impossible, so upsampling filters are used instead. An 
example of resampling smoothing digital filter is 
discussed in [9]. 

 
 
V. PHASE-PLANE TRAJECTORIES OF 

COMMON PROBABILITY DISTRIBUTIONS 
 
Phase-plane trajectory of Gaussian random 

process is shown on fig. 2. This phase portrait is 
characterized by approximately equal density of 
trajectory lines in all four quadrants of the plane. This 
fact is easily explained as Gaussian density 
distribution function is symmetric about the mean 
value. 
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Fig. 2. Phase portrait (phase trajectory)  t,, L  of Gaussian 
random process )(t  

 
Phase portrait of a Rayleigh random process is 

shown on fig. 3. The density of trajectory lines is 
slowly descending with increase of X-axis values 
according to the long right tail of Raleigh density 
distribution function. 
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Fig. 3. Phase trajectory of a Rayleigh random process )(t  

 
In contrast to phase-plane trajectory of a 

Rayleigh random process the trajectory shown on 
figure 4 has the highest density of lines immediately 
around zero point with the density rapidly descending 
towards positive infinity. This trajectory belongs to a 
random process with exponential PDF. 

Taking into account the difference between 
Rayleigh and Exponential probability density 
functions we conclude that in general phase-plane 
trajectory lines of a random process are concentrated 
in the vicinity of the mode of the stochastic process. 

The main difference between the Rayleigh 
distribution discussed above and the Maxwell 
distribution is that the latter has a longer left and 
shorter right density function tails making it closer to 
Gaussian distribution. This distinguishing 
characteristic is clearly visible on the phase portrait 
depicted on fig. 5. 

Finally, as shown on fig. 6 the log-normal 
distribution is characterized by extremely long 
probability density function tale. 

Mathematical description of phase-plane 
trajectories of random processes based on level-
crossing theory makes it possible to quantify the 
differences between probability distributions 
discussed above [5],[10], [11]. 
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Fig. 4. Phase trajectory of a random process )(t  with exponential distribution 
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Fig. 5. Phase trajectory of a Maxwell random process )(t  
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Fig. 6. Phase trajectory of a random process )(t  with log-normal distribution 

 
 
 
 

VI. APPLICATION IN THE FIELD OF 
MEDICINE: ECG ANALYSIS 

 
A fragment approximately 5 seconds length of 

an ECG record of young 23 years old healthy male 
and a phase-plane trajectory of this ECG signal are 
both shown on figure 7. The fragment is taken from 
record f2y02 stored in “Fantasia Database” of 
PhysioNet research resource for complex physiologic 
signals [12]. 
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Fig. 7. Fragment of ECG signal of a healthy human (top) and its 
phase trajectory (bottom) 

 
ECG analysis is mainly based on the following 

variables: minimum and maximum values of the 
signal (so called QRS-complex) and time intervals 
between them. By applying previously described 
method [10] it is possible to define several tolerance 

boxes, i.e. areas n21 ,...,,   on a phase plane, for 
each variable in study. 

The group of largest oval-shaped figures with 
greatest diameter on the phase portrait (fig. 7 bottom) 
corresponds to the QRS-complex of ECG signal. 
Group of small horizontally stretched ovals with 
indistinct borders in the left part of phase portrait is 
produced by ST segment of ECG. The fuzzy area to 
the left of ST segment with lots of phase trajectory 
intersections actually looking more like a spot 
corresponds to the PR-segment of the 
electrocardiogram. 

So phase-plane ECG representation with the 
help of level-crossing theory allows to detect changes 
in cardiac performance. 

 
 

VII.  OTHER AREAS OF APPLICATION 
 
Study of phase trajectories of random 

processes opens a prospect of effective analysis and 
control of complex dynamical signals [5], which are 
hard to formalize using other methodological 
approaches. Such complex systems and signals are 
found in medicine [3], [8], biology [13], 
technics [14], [15] and other areas [6], [16]. 

A good example can be found in the study of a 
work of USA researches [3] concerning investigation 
of EEG phase-plane trajectories associated with the 
transition from the interictal state to clinical seizures. 
It was shown that the use of traditional EEG 
waveforms (time-series plots) together with phase-
plane analysis for epileptic seizure onset prediction 
may increase the efficiency and accuracy of such 
predictions. Unfortunately to apply this method in 
medical practice it is necessary to train doctors, i.e. 
electroencephalographers (EEGers), to read and 
decode a completely new form of EEG representation, 
a trajectory of biophysical process on a phase-plane. 
As a result the conclusion of this research was based 
on subjective measures. 
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Level-crossing theory can give a formal 
description of phase trajectories of a random process 
such as EEG signal [10]. This means that the task of 
manual analysis of phase-plane trajectories by EEGer 
can be automated. The EEG specialist will have to 
deal only with valuable numeric parameters of phase-
plane trajectory of EEG signal or even with a 
decision suggestion made by automated analysis 
machine. If a mathematical model of a process is 
present the algorithms for calculating level-crossing 
characteristics are easily implemented both on 
software and hardware levels. 

Phase-plane signal representation together 
with level-crossing theory may be also used in 
telemetry data analysis. The telemetry data may come 
from a space vehicle, an aircraft, a nuclear reactor or 
a medical device (biotelemetry, see the above 
discussion of ECG and EEG data). 

In [10] an application of phase-plane analysis 
in reliability theory is shown. A similar approach 
may be used for analysis of risk situations in 
economics, business, engineering and other risk-
prone areas. 

With phase-plane method it is easy to find 
segments with different characteristics of a process 
and the level-crossing theory makes it possible to find 
transition points where the process switches from one 
state to another. Thus, the described method may be 
used for analysis, prediction, diagnostic, decision 
making tasks. 

 
 

VIII. CONCLUSION 
 
Phase-plane is a good method for examination 

of the detailed structure of stochastic processes. From 
figures 2-6 it is clear that visual appearance of a 
phase-plane trajectory of a random process greatly 
depends on the probability distribution of this process. 

In paragraph IV a relationship between phase-
plane trajectories and level-crossing characteristics of 
a random process was shown. This relationship 
makes it possible to describe phase-plane trajectories 
by means of mathematical language using the level-
crossing theory. 

Phase-plane method seems to be promising for 
solving the task of automating data analysis in such 
areas as medicine (analysis of medical data like ECG, 
EEG, etc.), telemetry data analysis and risk 
estimation. 
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