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Abstract 
 

In this article we consider a representation of a 
random process on phase plane. General notions of a 
stochastic (random) process and a phase space are 
introduced and traditional random process analysis 
methods are being considered. After that a notion of a 
random process as a phase portrait is given. These 
phase portraits are described by means of level-
crossing characteristics. Finally an application of the 
specified notion in the field of reliability theory is 
given. 

 
 
I. INTRODUCTION 
 
All experimental data collected during an 

observation of a real physical process could be 
divided into two categories: deterministic processes 
and nondeterministic (random, stochastic) processes. 
[[1] ]. Deterministic process could be always 
explicitly defined by a mathematical relationship. On 
the other hand it is impossible to predict the next 
value of a random process. Random processes are 
described by means of probabilistic concepts and 
statistical characteristics. 

Nondeterministic processes are universal in 
occurrence; they can be found in many areas of 
human activity, including science, technics, medicine 
and especially nature. For example, the following 
processes are stochastic: height of the wind-induced 
waves, combustion-chamber pressure in an engine, 
Brownian motion model of particles and stock market 
fluctuations, miscellaneous artifacts and noises 
arising in data acquisition and transmission devices, 
physiological data such as temperature, pulse, 
respiration, blood pressure and many others. 

 
 
II. DEFINITION OF A RANDOM 

PROCESS 
 
Stochastic process is a collection of random 

variables  Sss  ),(  indexed by parameter s , 
which belongs to an arbitrary set S  [[2] , [3] , [6] ]. 
Most often parameter s  is interpreted as time and 
without loss of generality we may define random 

process as  Ttt  ),( , where set T  is time. 
Parameter set of parameter t  is considered to be 

  ttT 0,  or  btatT  , , in other words 
it is assumed that T  matches either with positive 
semiaxis   ;0t  or with a finite interval  bat ;  
on time axis. Besides that random variables )(t  
possess values only on the real number line 

  ;)(t . 
Function )(t , defined on the interval 

 bat ; , would be called a choice function, or a 
sample distribution function, or realization or 
trajectory of a random process. 

Different random process formulation methods 
are used depending on the class of current problems. 
Most often cumulative distribution function (CDF) 
 1;tF   and probability density function (PDF) 
 1;tp   are used to describe a random value )( 1t  at 

some fixed point in time 1tt  . 
 
 
III. FUNDAMENTAL ANALYSIS 

METHODS OF A RANDOM PROCESS  
 
As was mentioned above an estimation of 

random process properties could be made with 
statistical tools. Let’s review basic methods of 
analysis in order of rising detail level of random 
process’s properties: 

[1]  Single characteristics. 
[2]  One-dimensional (univariate) distributions. 
[3]  Spectral-time dependencies, correlation 

dependencies. 
[4]  Multivariate (multi-dimensional) joint 

distributions. 
[5]  Level crossing characteristics of a random 

process. 
The expected value (mean) m , variance 
2
D  and other moment and central moment 

functions of a random process are all single 
characteristics of a stochastic process )(t . 

One-dimensional cumulative distribution 
function and one-dimensional probability density 
function give more information about a random 
process than its moment functions. Besides, one-
dimensional probability density function is easily 
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estimated by distribution bar chart method or by 
level-crossing PDF estimation method [[4] ]. 

Correlation function describes linear 
dependency between two random values, and finding 
this dependency is an important task in many 
applications. It is often role-defining when 
considering stationary random processes [[3] ]. 
Wiener–Khinchin theorem uniquely relates 
autocorrelation function of a wide-sense-stationary 
random process with its power spectral density over a 
Fourier transform. Hence this theorem allows 
accomplishing a transition from time characteristics 
of a random process to its frequency-response 
characteristics and backwards. 

Assembly of all finite dimensional 
distributions gives a fully complete characteristic of a 
random process [[2] , [3] , [5] ]. Unfortunately 
multivariate distribution is easy to find only when 

n ,...,, 21  are independent random variables, in 
this case probability density function   nnp ,...,1  

     nn
ppp   21 21

, i.e. the task reduces 
to univariate distributions analysis. In the general 
case it is very difficult to find a multivariate 
probability density function np  or a corresponding 
cumulative distribution function nF . 

Although finite dimensional distributions give 
a most complete characteristic of a random process, 
there is another method for detailed description of 
actual sample distribution function behavior. This 
method is concerned with investigation of level 
crossing characteristics of a process. Stated method 
will be examined more closely later on in this article. 

 
 
IV. PHASE TRAJECTORIES AS A 

METHOD OF DESCRIBING OF COMPLEX 
DYNAMICAL SYSTEMS 

 
In mathematics and physics a concept of phase 

space is used to describe multiple states of a system. 
In phase space a single point describes a state of 
arbitrarily complex system such as nuclear reactor, 
space vehicle or a human body, and a movement of 
this point describes evolution of the system. If we 
accept that system behavior is characterized by 

system’s state )(t  and its rate of change is 
dttdt )()(   then the plane  )(),( tt   will be a 

phase plane (subcase of phase space). 
Each point in a phase plane reflects to a single 

state of the system and is called a phase point, image 
point or a representative point. The change of the 
system’s state is displayed on the phase plane as a 
movement of this point. Trace of a moving phase 
point is called a phase trajectory. Complete collection 
of different phase trajectories forms a phase portrait. 
Phase portrait gives a graphical representation of all 
possible movements in a dynamical system with 
different initial conditions. 

Combined with analytical methods the phase 
plane method allows obtaining quantitative 
estimations of solutions of differential equations 
which describe the dynamical system. For example, 
the method makes it possible to estimate transition 
time of the image point from one state to another (i.e. 
response time), determine oscillation period and 
amplitude of periodic signal (see 1), etc. 

 
 
V. DISPLAYING RANDOM PROCESSES 

ON A PHASE PLANE 
 
The task of studying behavior peculiarities of 

the phase trajectory  tL ,,  of random process 
)(t  on phase plane  ,  often arises when 

dynamics of complex stochastic systems are being 
examined. In this case the random process is 
presented in a form of phase trajectory on a phase 
plane. It should be noted that this description of a 
random process carries information about both the 
random process )(t  and it’s dynamics in the form of 
derivative )(t . A phase trajectory of random 
process )(t  from 2 is shown on 3. 

Although all phase portraits of each sample 
distribution function of a random process are unique, 
phase portraits of random processes with the same 
distribution function are visually similar. Level 
crossing theory allows for the best way to describe 
these similarities. 

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

(t)

'
(t)

0 5 10 15 20 25 30
-1

0

1

t

(
t) A

A
T

 
Fig. 1. Simple harmonic motion )(t  with random slowly varying phase (left) and its phase portrait (right). A  — amplitude of oscillation. 

Oscillation period T  equals to perimeter of a circle on the phase portrait 



 77 

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

ti


0 100 200 300 400 500 600 700 800 900 1000

-0.05

0

0.05

ti

'

 
Fig. 2. Sample distribution function of a normally distributed process )(t  (top) and it’s derivative )(t  (bottom) 
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Fig. 3. Phase portrait (phase trajectory)  tL ,,  of Gaussian random process )(t  

 
 
 
VI. EXCURSIONS OF PHASE 

TRAJECTORY OF A GAUSSIAN PROCESS 
OUTSIDE A PREDEFINED AREA 

 
Gaussian processes are one of the most 

frequently encountered classes of random processes. 
Normal (Gaussian) distribution is used to describe 
many processes in physics, technics, medicine, 
biology and other fields. One of the high spots of 
Gaussian process is that its derivative is also a 
Gaussian random process. An example of sample 
distribution function of normally-distributed random 
process )(t  and its derivative )(t  is shown on  2. 

Assume that  tL ,,  is a phase trajectory of 
stationary continuous twice differentiable random 
process )(t . This trajectory represents a two-
dimensional process  Ttttt  ),(),()(1 . Let’s 
estimate the number of excursions of this two-
dimensional process outside a predefined area   
(see 4). Excursions of process )(1 t  outside 
boundaries AB  and CD  happen when random 

process )(t  crosses levels 1H  on condition that 
the value of derivative )(t  of random process 
resides in an interval  22 , HH . Using this line of 
reasoning it can be obtained that excursions of 
process )(1 t  outside borders BC  and AD  are due 
to derivative )(t  of random process )(t  crossing 
levels 2H  on condition that  11,)( HHt  . A 
general formula for an average number  TN ,

1
  of 

excursions of phase trajectory  tL ,,  outside a 
predefined area   during time interval  Tt,t 0 0  is 
written as follows: 

           
         1122

2211

,,,

,,,,
1

HHtPTHNTHN

HHtPTHNTHNTN















 , (1) 

where ),( THN i  is an average number of 
excursions of one-dimensional processes )(t  or 

)(t  during time interval  Tt,t 0 0  beyond levels 

1H  or 2H  correspondingly. 
The following formulas are true for a Gaussian 

random process [[3] ]: 
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HHHHHtP , (2) 
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
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
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2

2
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НrTTHNTHN exp)0(
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),(),( , (3) 

where 2

2

0
2

2

0 )()0(













 r

d
drr ; and 

)(r  is an autocorrelation function of process )(t  
normalized by variance. It is connected to standard 
autocorrelation function )(R  (normalized be mean 

only) by formula )()( 2   rR . 
Taking into account that derivative of a 

Gaussian random process is also a Gaussian random 
process we can easily deduce from formulas (1–3) the 
following dependency for an average number of 
excursions of process )(1 t  outside area   on a unit 
time interval: 
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 (4) 

As is shown in [[3] ], average value  1
T  of 

relative duration of process )(1 t  staying in a 
predefined area   would be expressed by formula: 






















































 1212)( 21

1

HHT . (5) 

 
An average duration of an excursion of two-

dimensional process )(1 t  outside area   can be 
obtained from the following formula: 

  )()(1)(
111 1   NT . (6) 

Following formulas can be handy for 
calculations of excursion characteristics of a random 
process )(t  when processing experimental data: 

2

2

)0(








 r , 2

2
)4(

0
)4( )0()0(



 





 rrr . 

 
 

VII. EXCURSIONS OF PHASE 
TRAJECTORY OF A RAYLEIGH PROCESS 
OUTSIDE A PREDEFINED AREA 

 
Fig. fig. 5 shows an example of sample 

distribution function of a Rayleigh distributed 
random process )(t  and its derivative )(t . It is 
worthy of note that one-dimensional PDF of 
derivative )(t  of Rayleigh distributed process )(t  
has normal distribution, but in general case for multi-
dimensional PDFs of process )(t  this is not true. 

Phase portrait of a Rayleigh process )(t  is 
shown on 6. The fact that density of lines forming the 
phase trajectory  tL ,,  of process )(t  becomes 
smaller as the distance to the origin grows, 
corresponds to excessively long right end of the 
Rayleigh probability density function plot. 

Let’s represent phase trajectory  tL ,,  of a 
stationary continuous twice differentiable Rayleigh 
distributed random process )(t  as a two-
dimensional process  Ttttt  ),(),()(2  and 
let’s find the number of excursions of this process 
outside a predefined area   (7). 
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Fig. 4. Trajectory of a two-dimensional vector random process  )(),()(1 ttt   on a phase plane  , . 
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Fig. 5. Sample distribution function of a random process with Rayleigh distribution (top) and its derivative (bottom) 
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Fig. 6. Phase portrait (phase trajectory)  tL ,,  of a Rayleigh distributed random process 
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Fig. 7. Excursions of Rayleigh process outside predefined area  . 

 
 
 
For a Rayleigh random process the following 

two formulas take place: 
      22 2exp1,0  HHtP , (7) 


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


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














 










 


2

2

2
ННTTHN exp

2
2

2
)0(),(

2
1

2
1

,(8) 

where )(  is a normalized by variance 
autocorrelation function of process )(t , it is 
connected to standard autocorrelation function )(R  

by formula )()( 2  R . 
Using the line of reasoning stated in the 

previous part of this article, based on formulas (1–
3, 7 and 8) for a Rayleigh process we will receive: 
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where   is a parameter of Rayleigh distribution (its 
mode), which is connected with variance 2

  of 
Rayleigh distributed process )(t  by formula 

  22 22  . 
For an average value  2

T  of relative 

duration of process )(2 t  staying inside area   and 
for an average duration of excursions of two-
dimensional process )(2 t  we deduce [[3] ]: 
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  )()(1)(
222 1   NT . (11) 

 
 

VIII. PRACTICAL EXAMPLE 
 
Let us deal with the following practical 

example. Assume that we have a dynamic system and 
its states are described by two-dimensional random 
function  )(),()( 21 ttt  . The system is 
considered functioning at the point of time 1tt  , if 

 )( 1t , where   is a set of all functional (correct) 
states of the system. We will assume that borders of 
the set   can be defined as a rectangle on a plane (as 
shown on 4 and 7). 

Now let’s formulate a classical problem in 
reliability theory — estimate the number of failures 
of our system during a specified time interval. 

To solve this problem we will assume that 
variables )(1 t  and )(2 t  are both described by 
normal distribution law with mean 021   mm  

and variances 2
1

2
1

  and 2
2

2
2

  respectively, 
and their autocorrelation functions are in the form 

  2,1,exp)()( 222  irR iii
. 

Now we can apply methods, discussed in 
section VI. Average number of excursions of process 

)(t  outside acceptance area   during interval of 
analysis  Ttt 00 ,  will be defined as follows: 
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Characteristic ),( TN   in the scope of 
current task allows to calculate the number of system 
failures in a definite time T , and value 

)(),(1
1   NTN

T
 is the failure rate (number of 

failures during a unit time). Characteristic )(  is 
the average recovery time and )(T  — mean time 
between failures. 

 
 
IX. CONCLUSION 
 
The examined method of random process 

analysis on a phase plane makes it possible to 
graphically represent a random process as well as its 
dynamics, thus reducing the complexity of analysis of 
complex stochastic systems. Use of level-crossing 
theory for analysis of phase portraits allowed us to 
describe detailed structure of a random process. 
Proposed implementation of all computations is 
easily achieved both on software and hardware level 
as the main computational component is a counter of 
level-crossings. 

Excursion characteristics of random process 
outside a predefined area may be used in control 
systems, diagnostic systems, decision-making 
systems, for classification and other tasks. 
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