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Abstract

This paper is about the stochastic optimization
in a hydrogen distribution network which feeds a
desulfuration plant, using multistage formulation.
The network has two hydrogen production units with
different levels of purity and one recirculated low
purity stream from an adjacent process. The source of
uncertainty is the hydrogen consumption in the
desulfuration unit, and is correlated with a discrete
probability distribution function. The results obtained
shows that no matter the values that the random
variable can have, the variables are always within a
safety-quality range. The cost that must be paid for
manage the uncertainties is 4% in average respect
deterministic optimization.
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I. INTRODUCTION

In a petroleum refinery the desulfuration
process is where the sulfur is removed from the
hydrocarbon using hydrogen, reducing the acid rain
occurrence [1]. The hydrogen is produced, and
transported to the desulfuration units in hydrogen
distribution networks (HDN’s). The optimal
management of HDN’s is critical: if the quantity of
hydrogen transported is less than the minimum
required, then the fuel will be out of the emission
policies, and if is much more than the required,
important losses will be experimented, see [2] for
more information. Therefore an optimization in the
hydrogen production can be formulated, but the
demands of this gas in the desulfuration unit depend
on the fuel loaded, which generally is a mixture, so
there is uncertainty in this parameter, consequently an
appropriate management of these uncertainties is
required by using stochastic optimization.

In the classical approach of optimization, the
equations and the parameters are considered totally
known, but when the solution is applied into the
reality, frequently the value of the objective function

is worse than the expected and/or the constraints are
violated systematically [3]. These problems can be
attributed to the uncertainty that affect the system,
related with parameters that connect the system with
the exterior (e.g. market demands) [4]. Usually, the
behavior of these parameters can be described using a

random variable ¢ that belongs in to a probability
space correlated with a probability distribution
function (PDF).

For solving this kind of problem, we can

assume that there are ™ stages of decision (% ).
Each stage can be solved knowing only partial
information about the random variable, which is
known as multistage formulation. So in the first stage
of decision the initial conditions and the PDF of the
random variable is known, once that this variable is
realized in time, i.e. has a concrete value, we can
make a second decision considering: the first one, the
value for the random variable in the first stage and
the PDF of the random variable in the second stage,
and so on with the following stages [5]. Therefore the
decision variables in each stage will depend of the
value of the random variables in the previous stages.

If £x is the random variable in the stage ¥ , the
general problem of multistage approach can be
formulated as [3]:
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Being Eék the estimated value of f, respect
to the random variable &. The problem in (1), is in

the space of probabilitiesZ . If the PDF has only a
discrete number of values (, each of them with a

determined probability of occurrence ﬂf the
problem in (3), can be reformulated in its
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deterministic equivalent by using the scenario
approach [6, 7].

In this work we’ll use multistage formulation
for minimize the production cost of hydrogen in a
simplified HDN solving it with scenario approach.

I1. Problem Formulation

Undesulfurized > HD3
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Let’s consider a simplified structure of a HDN
represented in Figure 1 that has one desulfuration unit
(HD3), two hydrogen production units that produces
with different levels of purities (H4 and H3), one low
purity recirculated stream that came from other
process (UNI), and collectors connecting the
production and recirculation units with the
desulfuration ones (CH4, CH3 and CBP).

Desuljurized Fuel
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Fig. 1: Process flow sheet for a simplified HDN

The HDN works in stationary state because is
a continuous process, but due the uncertainties that
affect the system, the problem formulation will be
pseudo-stationary i.e.: for each decision stage, the
hydrogen demand can change according to its PDF.

Defining the following elements for the
optimization:

Sets
PU : Production and recirculation units.
CU : Consumption units.
CL : Hydrogen Collectors.
STR: Process streams.
&: Random variable in each decision stage:
k=1...,n.
OPU (PU ,CL): Process streams that comes out

from PU to CL.
OCL(CL,STR): Process streams that come out

from CL to CU .
ICU (CU , STR): Process streams that come into

CU.

Parameters

Low LJB : Lower and Upper hydrogen molar flow

PU
production in each PU
Xy : Available hydrogen purity in each PU

C,y : Cost of produce hydrogen in each PU

xco" Minimal mole fraction allowed for the

desulfuration process.

PY : Initial pressure in CL .

LOW pUP . . .
P, ,P; : Minimal and maximal pressures
allowed respectively in each CL.

Ve, Tey  Volume and temperature of the collectors.

Uncertain Parameter
M arce (CU,&): Flow of hydrogen needed for
the desulfuration in each stage.

Positive Variables
X5 Hydrogen mole fraction in process streams.

Mere (fl,...,fk): Molar flow in process streams,
upstream collectors, in stage K =1,...,n.

u(kPU’CL)(fl,...,fk): Molar flow produced in each

PU to CL,inthestage k =1,...,n—1.

0
Upu cu)

in the first decision stage.
X, Hydrogen mole fraction in CL .

: Molar flow produced in each PU to CL

mg, (&:--2 &) - : Molar flow that come into each
CL,inthestage k=1,...,n—1.



mgL: Molar flow that come into each CL, in the

first decision stage.
PY (&--1& )« Pressure in CL at the end of the

stage K =1,...,n
Xeu (&

stream that come into CU , inthe stage k =1,...,n

My (Green )

come into CU ,inthestage k=1,...,n

cfk): Hydrogen mole fraction of the

: Molar flow of the stream that

Free Variables
A:L (51, ) Mole accumulation in each CL,

in stage k=1,...,
AnéL(CL,ggl,...,ék):

accumulated in each CL, instage k =1,...,n

Quantity of  mole

Equations

Mole balance at the entrance of the collector:
the molar flow entering in the collector is equal to the
sum of molar flows that come from production units.

UPZOPU u(kPU’CL) (él""’é':k ) - mckzL (CL' 651,...,@)
. Zo: U(OPU cL) =m8L (CL), VvCL, k=1...,n
LeOPU

(2)

Mole balance in the collector: due the different

values that the random variable can have, the mole

balance in this unit is pseudo-stationary and the

difference between the flows produced and consumed
is the mole accumulation.

méL(gli""gk)_ Z IS(':I:?L(gli §k+1):
k+l(§1’ §k+1)
mgL_ z méTR(gl):'%lL(gl)' VCL,
k=1...,n-1
3)

The mole accumulation formulated in (6)
affects the pressure inside the collectors. The change
in this variable is proportional to accumulation time

® and the difference between inner and outer flows.

Ideal Gas Law is used (in operational conditions
implies a maximal error of 2.5% [8]).

m(li,l_ (51’.‘.’§k)_STF§CL I;;é (51’ §k+1):
_ V k+1 _ pk

G)RTCL I: (51' ‘§k+1) PCL (6617---’§k):'
mgL - STRZC;CL STR (é:l) @RT |:PC1L (51)_ PCOL ]

VvCL, k=1...,n-1
(4)
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Pressure bounds: For safety reasons, the
pressure inside the collector must be bounded.

P <Py (&,....&)<Py, VCL, k=1..,n
(5)
Mole Balance at the entrance of the
consumption unit;
Y M (&) =My (&enné) VCU
STRelCU
k=1...,n
(6)

Hydrogen balance at the entrance of the
consumption unit:

Z m:TR(51,---,§k)XSTR(STR):
méu(é:l""’ék)xéu(fl,...,é‘k), VYCU, k=1....n
(7)

Minimal purity allowed in the consumption
units: The mole fraction of the stream that enters into
the consumption unit must be at least grater than a
lower bound.

X§o (& &) 2%, VCU, k=1...,n

(®)

Minimal hydrogen flow in the consumption

units: The hydrogen flow that enters into the

desulfuration unit, must be at least the one required
for the desulfuration.

méU (51""’§k) Ccu (51’ -5k ) CHARGE (CU é:k)
vCU. k=1...,n
9)
Purity relationships:
Xeu = %o, V(CL,PU)eOPU o)
10
XoL = Xs7r o V(CL,STR)eOCL
Lower and upper production: operational
constraint about production capacity
o < D Uy (G &) SQR
CLeOPU
Qo < D upy <Qp, VPU,..k=1..n
CLeOPU
(11)

Cost of production: the cost of hydrogen
production is calculated by using the estimated value
for each scenario in every decision stage, just like the
expressed in (1) .

Cost = Z |:U(OPU,CL)XPUCPu:|+
(PU,CL)

+E§1{ Z u(lpu,CL)(‘fl)XPuCPU Tt
(PU.CL)

gn—l) XPU CPU ] : ]

(12)
So the stochastic optimization problem can be
summarized as: minimize (12), subject to (2) to (11).

+E§n1L z (npu cL) ( 10

PU,CL)



I11. RESULTS AND DISCUSSION

Table 1
Some values of the parameters used

The model was programmed using 3 stages of in the stochastic optimization
decision in GAMS™, with CONOPT™ as NLP PU H4 H3 UNI
solver in a computer with Intel Pentium Dual™ kmol
T2080 1.73Ghz processor and 2Gb RAM memory. o (—J 0 0 0
The CPU time was 0.059s with 23 variables and 24 h
constraints. The optimization was solved using the op ( kmol
values of the parameters given in Table 1, and the PU (TJ 32245 14300 468.77
DPDF of the random variable represented in fig. 2.
The lower bound for the purity in the consumption Xpu 0.991 0.94 0.8
unit was 0.971 in mole fraction.
In stochastic optimization, the idea is ensure a C( € J 88.1 77 0
feasible operation having in to account the possible MmolH, '
changes in the random variable; in particular we will
focus our attention in two constraints: the pressure in CL CH4 CH3 CBP
collectors and the purity at the entrance of HD3: the PCLLO (bar) 19 19 19
pressure is a safety constraint and always must be
bounded and the hydrogen purity is a quality PYF (bar) 21 21 21
constraint that guaranties a good performance of the >
desulfuration unit. M (m ) 50 50 50
o T e ] T(K) 300 300 300
. 3 & E
g ] Fig. 3 shows the values of purity at the
e T F = entrance of the desulfuration unit. It can be see that
0 b £l B for each possible value that the random variable can
ok K gii 3 have according to its PDF, the purity is greater than
ok ] the lower bound.
o 4 2 122 16
Fig. 2: Discrete PDF for hydrogen consumption
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Fig. 3: Evolution of the purity at the entrance of the Consumption unit, for each stage

Fig. 4 shows the evolution of the pressure for
CH4 and CH3 in every decision stage (CBP is

irrelevant, because for all stages Mggp | p5 IS in the

upper bound). For every possible value that the
hydrogen demand can have, the pressure is always
within the safety operational range.
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Fig. 4: Evolution of the Pressures inside the collectors (a) CH4 and (b) CH3, for each stage

It’s important to mention that the feasible
operation is only ensured for the values considered in
discrete PDF because the scenario formulation.

Finally, Table 2 lists the estimated value of the
hydrogen production cost obtained with stochastic
approach and the one calculated by deterministic

optimization using the expected value of the hydrogen
demand. It can be seen that the estimated value of the
objective function in stochastic optimization is 4% in
average greater than the deterministic result for all the
stages considered, which can be understood as the cost that
must be paid to manage the uncertainties.



Table 2
Costs obtained with stochastic and deterministic
optimization

Stage | Est. Cost Cost (€/h)
Stochastic |0 878.04 | peterministic

1 810.71 821.47

2 810.24

IV. CONCLUSIONS

The use of discrete PDF allows solving the
stochastic problem like a deterministic one, but we
can guarantee a feasible operation respect to critical
variables in a simplified model of HDN (collector
pressure and hydrogen purity) only for the values
considered. If the solution must be more robust, then
more values in the PDF have to be considered, with
the corresponding rise in computational effort. The
average cost that must be paid for handle the
uncertainties is 4% respect to the deterministic
optimization.
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