TUNING METHODS TO PROCESS CONTROL TRAINING EQUIPMENT RT-578

Cipriano Alejandro Del Angel Vicente, Claudia Ariana Ramirez, Juan Angel Zamora Perez Advisor: Miguel Angel Barron Castelan

> Instituto Tecnológico Superior de Tantoyuca Electronic Engineering Tantoyuca, Mexico

Abstract

There are several methods that through the PID (Proportional Integral Derivative) can generate automatic control. In this work are used particularly two methods, the Ziegler-Nichols and Cohen-Coon that are applied to a team of control for industrial processes. These two methods are programmed to control the level, the flow, the pressure and temperature of a certain amount of fluid contained in a warehouse transparent.

Since not all methods are efficient to control with accuracy certain parameters, they are looking know which of these two methods is more efficient to control these parameters, or for a given parameter, which method is more appropriate.

I. INTRODUCTION

The timing by means of control PID is very important, is already in many of the different technologies of our environment. Since the cars we handle daily until the nuclear reactors electricity generators. In this case apply control to a team of industrial processes to which it is called controlled system. The variable out or real x value of this team, is a parameter that want to keep controlled in a desired value w.

When it is a difference between the real value x and the desired value w, the driver will lead to the system toward the desired value. The parameters are programmed with the methods of tuning Ziegler-Nichols and Cohen Coon. This method will provide two forms of compare which of these is more convenient to use when you want to control a parameter.

To make the experiments use a training equipment composed of industrial equipment RT-578.

This team has a deposit transparent in which regulates the level and the pressure, a piping system 92

for regulating the flow, and a system of two circuits with heat exchanger plates for the temperature regulation.

II. METHOD OF ZIEGLER-NICHOLS

Ziegler and Nichols suggested two methods of tuning to determine the values of the gain proportional (Kp), the time integral (Ti) and the time derivative (Td) on the basis of transient response from a specific methods so-called tuning of Ziegler-Nichols.

First method (Curve of reaction)

In the first method, the response of a plant before an entry step is obtained from an experimental basis.

The response curve step unit takes the form of S if the plant does not contain integrators nor poles dominant complex conjugates (fig. 1). This curve is characterized by two parameters: the delay time (L) and the time constant (T). If the answer is not a curve in the form of S is not advisable to use this method.

Fig. 1.

In this case the role of transfer is approaching through a system of the first order with a delay of transport as shown below:

$$\frac{C_{(s)}}{U_{(s)}} = \frac{Ke^{Ls}}{Ts+1}$$

In the first method, Ziegler and Nichols established the values of Kp, it, and Td in accordance with the formula that appears in the table 1.

			Table 1
Type of controller	\overline{K}_p	T_i	T_d
Р	$\frac{T}{L}$	8	0
PI	$0.9\frac{T}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{T}{L}$	2L	0.5 <i>L</i>

The driver PID tuned through the first method of the rules of Ziegler-Nichols produces:

$$G_{c(s)} = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$
$$G_{c(s)} = 1.2 \frac{T}{L} \left(1 + \frac{1}{2Ls} + 0.5Ls \right) =$$
$$= 0.6T \frac{\left(s + \frac{1}{L}\right)^2}{s}$$

Therefore, the driver PID has a pole in the origin and a double zero in S=-1/L.

Second method (Oscillation continuous)

In this method, first outlined the values of Ti= and Td=0. Subsequently, using only the action proportional control increases the value of Kp from zero to a critical value where the exit show sustained oscillations. If such an exit shows no oscillations sustained for any value of Kp, this method cannot be applied. Therefore, the gain and the critical period are determined experimentally.

Ziegler and Nichols suggested that the values of the parameters Kp, Ti and Td in accordance with the formula the table 2.

The driver PID tuned through the second method of Ziegler-Nichols produces:

$$G_{c(s)} = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$G_{c(s)} = 0.6K_{cr} \left(1 + \frac{1}{0.5P_{cr}s} + 0.125P_{cr}s \right) = 0.075K_{cr}P_{cr} \left(\frac{s + \frac{4}{P_{cr}}}{s} \right)^2$$

Therefore, the driver PID has a pole in the origin and double zero in s=-4/Pcr.

_

			Table 2
Type of controller	K_0	T_i	T_d
Р	$0.5K_{cr}$	∞	0
PI	0.45 <i>K</i> _{cr}	$\frac{1}{1.2}P_{cr}$	0
PID	$0.6K_{cr}$	$0.5P_{cr}$	$0.125P_{cr}$

The rules of tuning Ziegler-Nichols apply only to the plants whose dynamic is known.

The rules developed by Ziegler and Nichols are the most used in the tuning drivers PID, when it is difficult to obtain the mathematical model of his plant to which he requires some kind of control.

These rules of tuning require initially an experimental stage where the engineers in charge of the development of the controller PID, must specify the response that generates the plant and with it determine the driver appropriate, if that can be applied the methods of Ziegler -Nichols.

Method of Cohen-Coon (reaction)

Cohen and Coon were the first to observe that for most of the processes controlled, the curve of a reaction may be approximate to the response of a system of the first order with time died.

This requires of the estimate of a gain stationary, a time constant effective and a time dead cash to characterize the process and get a response that comes close very closely to the curve of reaction of the current process.

Cohen and Coon also developed rules of tuning with the aim of achieving replies with a reason decay of a fourth. However, as this criterion does not provide a single set of parameters of tuning, the rules of Cohen-Coon estimated values different from those encountered by Ziegler and Nichols, as shown in the table 3.

Interestingly, more than half of the industrial controllers used today used control schemes PID or PID amended. The drivers PID analog are mainly type hydraulic, pneumatic, electronic, electrical or its combinations.

Type of controller	K_{c}	T_i	T_d
Р	$\frac{1}{k} \left(\frac{r}{t_0} \right) \left[1 + \frac{1}{2} \left(\frac{t_0}{r} \right) \right]$		
PI	$\frac{1}{k} \left(\frac{r}{t_0} \right) \left[0.9 + \frac{1}{12} \left(\frac{t_0}{r} \right) \right]$	$t_0 \left[\frac{30 + 3\left(\frac{t_0}{r}\right)}{9 + 20\left(\frac{t_0}{\tau}\right)} \right]$	
PD	$\frac{1}{k} \left(\frac{r}{t_0} \right) \left[\frac{5}{4} + \frac{1}{6} \left(\frac{t_0}{r} \right) \right]$		$t_0 \left[\frac{6 - 2\left(\frac{t_0}{r}\right)}{22 + 3\left(\frac{t_0}{\tau}\right)} \right]$
PID	$\frac{1}{k} \left(\frac{r}{t_0} \right) \left[\frac{4}{3} + \frac{1}{4} \left(\frac{t_0}{r} \right) \right]$	$t_0 \left[\frac{32 + 6\left(\frac{t_0}{r}\right)}{13 + 8\left(\frac{t_0}{\tau}\right)} \right]$	$t_{0}\left[\frac{4\left(\frac{t_{0}}{r}\right)}{11+2\left(\frac{t_{0}}{\tau}\right)}\right]$

III DESARROLLO

Apply the second method of Ziegler-Nichols to our plant:

$$G(s) = \frac{0.8}{30s^3 + 43s^2 + 14s + 1}$$

Which was obtained by mean training equipment RT-578, shown below, where it try to control the water level at set-point.

Fig. 2.

We know the critical gain is Kcr = 23. Knowing this parameter, we can to compute the critical period Pcr based in the table 4.

Fig. 3.

From it figure; we can obtain the parameter Pcr = 9.1666667.

On the other hand, we have at the next table; how we can compute Kp. Ti and Td to different controllers PID's.

Type of	K _n	T_i	T_d
P	11.5		0
PI	10.35	7.638889	0
PID	13.8	4.583334	1.14583

Now, we have the simulations about it for the controllers P, PI and PID's. It use Simulink of Matlab.

Then, its shown the results obtain for each controller (fig. 5).

IV. SUMMARY

We can see, only the P controller reach the stability. The controllers PI y PID don't never reach the stability, because the output is mainted at oscilling, then we can to say the P controller is the best. This way, we can use the Ziegler-Nochols

method first and we have a good stability.

The stability time is about 70 seconds.

REFERENCES

- [1] Modern Control Engineering.- Ogata Katsuhiko Ed. Prentice Hall.
- [2] Manual de Experimentos.- RT-578 Equipo de control de proceso industrial.
- [3] Advanced PID Controllers.- Astrom, K. J.