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Abstract

The paper discusses simulation algorithms for
1D, 2D, and 3D anisotropic random fields. The
algorithms are the natural extension of the synthesis
method used to simulate random vectors and matrices
with given statistic properties.

The synthesis methods [1] discuss for
Nonlinear Multichannel Discreet Forming Filters
(NMDFF) used to simulate random vectors and
matrices with given statistic properties can be
naturally extended to simulate Gausian and non-
Gaussian random fields with a space-domain co-
ordinate anisotropy. The synthesis method presented
in this paper has the only one limitation for direct
application: the limitation to factorization of
correlation functions on their space-domain co-
ordinates for the non-Gaussian field generating the
respective Gaussian field (generally, the anisotropic
one). Nevertheless, this limitation is relatively of
small importance in practice, as the results of
experimental studies of the fields are quite often
represented by their cross-sections of their space-
domain correlation function, one for each co-ordinate
and time. That is why the introduced limitation does
not prevent a user from building a statistic field
model not contradicting to the experimental data.

We need to emphasize that the requirement to
the space-time domains correlation function being
factorable is necessary only to the generating
Gaussian field. The non-Gaussian field being
simulated can have a non-factorable space-time
domains correlation function. Moreover, the
generating Gaussian field in practical applications
can be expanded into its orthogonal components,
which are statically independent due to the field
being normal. In this case, the factorization is natural
and, therefore, does not limit the problem of
simulating the generating field.

In [1] assumes that, for NMDFF synthesis, the
normalized time-domain statistic properties for the
processes in channel forming filters are the same.
This assumption drastically increases the speed of
simulation algorithms, whilst it is not too much
restrictive  for practical applications of the

synthesized algorithms; as such assumption is true for
many practical cases. Frequently, this assumption is
simply assumed and even not mentioned. That is why
we assume that this condition is always true. We
should mention nevertheless that the process average
values and variances can vary, which is used in
practical cases. We make the same assumption for
space-domain co-ordinate (that the normalized
statistical properties are the same along all field co-
ordinates).

We confine ourselves to the explicit notation
of simulation algorithms for 1D (vector), 2D
(matrix), and 2D (space-domain) fields, as these field
types are used for mathematical models of real
physical processes. For example, such fields describe,
respectively, active jam (and informational) signals,
underlying terrain interferences (from land and see),
dispersive interferences (meteorics and dipole dipole
scatterer fields).

For the algorithms simulating non-Gaussian
fields, we introduce the following designations: V are
the elements of the non-Gaussian fields, U the
elements of the generating Gaussian field, (X,Y,Z)

orthogonal field co-ordinates of Field U,
I’(X), I’(Y), rt the
correlation functions of the generating Gaussian field
(elements of correlation matrices), f(.) a functional

respective  normalized

transform corresponding to the required distribution
density of the field being simulated, & mnormal

mutually independent random (pseudo-random)
values with zero average and unit variances. All the
introduced values can generally have an arbitrary
number of indices. In our particular case, we confine
ourselves to not more than time-variable 3D fields;
the number of indices is not more than 4, one always
being time [2].

The simulation algorithm for a 1D (vector)
field in these designations can be represented as:
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where X, =&, Vi, t=..-3-2-1,0,1,2,3,4,...
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The distribution density \Z,t is determined by

the functional transform f(.).

We can interpret Algorithm (2) as follows:

1. At each fixed t, the topmost expression
in (1) transforms the vector of the mutually
independent normally distributed random values

“;M(X),t =(§1,t,§2’t,...§M(x)’t) with zero average
and unit variances into the vector
XM(X)J :(Xma Xz,p"'XM(x)’t) of  normally
distributed random values with zero average and unit
variances, too, but with the normalized correlation
< pXx) —|p*) - pX) -
matrix D) =|Dy x|, the matrix D/ being
independent on t. We write such transform as:
(x)
Dx)
gM(X),t = XM(X)J .

2. The middle expression in (1) transforms
each of the elements of the vector

X0, = (X5 Xy 50X ) into the sequence
U, = (...—2,-1,0,1,2,3,...) by a linear discreet
forming filter [1] with the coefficients
(ay,by)=(a,a,,..ay;b,,b,..0,_,) which are
the normal time-domain correlation function of the
sequence r(B)(tl, t2)= r(B)Qtl —'[2|)= I’(B)(T) for
each element of the vector X oo being

independent from the first index of the vector element

X004

this transform forms a vector normal process, or, in

due to the assumptions made. Therefore,

other words, forms M (x) normal correlated
processes, which individual time-domain correlation

function being equal to I’(B)(T), and the cross-

correlation function of the processes Xi’ § = Xi(tl)
and Xj,tz = Xj(tz)
) i ). 5120 M e

designate this transform as:
(an.by)

Xty = Uyoo,

equal to
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3. The expression in the third line on (1)
determines the non-linear functional transform of

M (X) normal stationary and stationary-coupled

(x)

processes V;, =V, ('[1), or in other works, into a
ot

processes into M not-Gaussian non-stationary

~

non-Gaussian ~ vector  process VM(X),t' Ty

distribution density, correlation, and cross-correlation

functions of the processes VM(X) . can be evaluated

through the expressions from [2]. We designate this
non-linear transform, that includes the parameters

(UM(X)’tﬁ GM(X),t) =
(UI,U Uz,ta"'UM(X)jt; O-l,t’ O-z,ta"'O-M(XJ,t)

as:

FEU00,0 00,

UM(X),t = VM(X),t

We can re-write Algorithm (3.46) in these
designations as:

= VM(X), .
)
We can, using (5), write down simulation
algorithms for fields of higher dimensions purely
formally, by adding new indices.
We can formally derive the simulatj
algorithm of a 2D field (a matrix) from (5) by
introducing a co-ordinate Y , an additional transform

X into Y, and respective indexing of the
designations:
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Equation (6) can be expanded:
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where similarly, (1), X, =&, for Vi,

-3-2-1,0,1,2,3,4,... and for WVt
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The simulation algorithm of a 3D field (a cube, or
generally, a tensor) can be derived from (6) by
introducing a co-ordinate Z , an additional transform

Y into Z, and respective indexing of the
p g

designations:
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Equat10n (8) can be expanded:
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where similarly (1), X, =&, for Vi,

t=..-3,-2,-1,0,1,2,3,4,.. and for Wt
DI(X) - D(gx) - D1(Y) - D(gY) - DI(Z) - Déz) -1,
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The following generalization of the
simulating algorithms for higher dimensions is
obvious, due to a very convenient representation in
Expression (8).
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