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Abstract 
 
The paper discusses simulation algorithms for 

1D, 2D, and 3D anisotropic random fields. The 
algorithms are the natural extension of the synthesis 
method used to simulate random vectors and matrices 
with given statistic properties.  

 
 
The synthesis methods [1] discuss for 

Nonlinear Multichannel Discreet Forming Filters 
(NMDFF) used to simulate random vectors and 
matrices with given statistic properties can be 
naturally extended to simulate Gausian and non-
Gaussian random fields with a space-domain co-
ordinate anisotropy. The synthesis method presented 
in this paper has the only one limitation for direct 
application: the limitation to factorization of 
correlation functions on their space-domain co-
ordinates for the non-Gaussian field generating the 
respective Gaussian field (generally, the anisotropic 
one). Nevertheless, this limitation is relatively of 
small importance in practice, as the results of 
experimental studies of the fields are quite often 
represented by their cross-sections of their space-
domain correlation function, one for each co-ordinate 
and time. That is why the introduced limitation does 
not prevent a user from building a statistic field 
model not contradicting to the experimental data.  

We need to emphasize that the requirement to 
the space-time domains correlation function being 
factorable is necessary only to the generating 
Gaussian field. The non-Gaussian field being 
simulated can have a non-factorable space-time 
domains correlation function. Moreover, the 
generating Gaussian field in practical applications 
can be expanded into its orthogonal components, 
which are statically independent due to the field 
being normal. In this case, the factorization is natural 
and, therefore, does not limit the problem of 
simulating the generating field. 

In [1] assumes that, for NMDFF synthesis, the 
normalized time-domain statistic properties for the 
processes in channel forming filters are the same. 
This assumption drastically increases the speed of 
simulation algorithms, whilst it is not too much 
restrictive for practical applications of the 

synthesized algorithms; as such assumption is true for 
many practical cases. Frequently, this assumption is 
simply assumed and even not mentioned. That is why 
we assume that this condition is always true. We 
should mention nevertheless that the process average 
values and variances can vary, which is used in 
practical cases. We make the same assumption for 
space-domain co-ordinate (that the normalized 
statistical properties are the same along all field co-
ordinates). 

We confine ourselves to the explicit notation 
of simulation algorithms for 1D (vector), 2D 
(matrix), and 2D (space-domain) fields, as these field 
types are used for mathematical models of real 
physical processes. For example, such fields describe, 
respectively, active jam (and informational) signals, 
underlying terrain interferences (from land and see), 
dispersive interferences (meteorics and dipole dipole 
scatterer fields). 

For the algorithms simulating non-Gaussian 
fields, we introduce the following designations: V are 
the elements of the non-Gaussian fields, U the 
elements of the generating Gaussian field, ),,( ZYX  
orthogonal field co-ordinates of Field U, 

)()()( ,, ZYX rrr  the respective normalized 
correlation functions of the generating Gaussian field 
(elements of correlation matrices), (.)f  a functional 
transform corresponding to the required distribution 
density of the field being simulated, ξ  normal 
mutually independent random (pseudo-random) 
values with zero average and unit variances. All the 
introduced values can generally have an arbitrary 
number of indices. In our particular case, we confine 
ourselves to not more than time-variable 3D fields; 
the number of indices is not more than 4, one always 
being time [2]. 

The simulation algorithm for a 1D (vector) 
field in these designations can be represented as: 
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where ttX ,1,1 ξ= , t∀ , ,...4,3,2,1,0,1,2,3... −−−=t , 
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The distribution density tiV ,
~

 is determined by 

the functional transform (.)f . 
 
We can interpret Algorithm (2) as follows: 
 
1. At each fixed t, the topmost expression 

in (1) transforms the vector of the mutually 
independent normally distributed random values 

( ) ( ) )...,,( ,,2,1, tMtttM XX ξξξ=ξ  with zero average 

and unit variances into the vector 
( ) ( ) )...,,( ,,2,1, tMtttM XX XXX=X  of normally 

distributed random values with zero average and unit 
variances, too, but with the normalized correlation 
matrix ( )

( )
( )

( )X
M

X
M XX D=D , the matrix ( )

( )X
M XD  being 

independent on t. We write such transform as: 
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2. The middle expression in (1) transforms 

each of the elements of the vector 
( ) ( ) )...,,( ,,2,1, tMtttM XX XXX=X  into the sequence 

,...)3,2,1,0,1,2(..., −−=tiU  by a linear discreet 
forming filter [1] with the coefficients 

),...,;,...,(),( 11021 −= NNNN bbbaaaba  which are 
the normal time-domain correlation function of the 
sequence ( )( ) ( )( ) ( )( )τBBB rttrttr =−= 2121,  for 

each element of the vector ( ) tM X ,X , being 

independent from the first index of the vector element 
( ) tM X ,X  due to the assumptions made. Therefore, 

this transform forms a vector normal process, or, in 
other words, forms ( )XM  normal correlated 
processes, which individual time-domain correlation 
function being equal to ( )( )τBr , and the cross-

correlation function of the processes ( )1, 1
tXX iti =  

and ( )2, 2
tXX jtj =  equal to 

( )( ) ( )( )jirttr XB −⋅− 21 , ( )XMji ,...2,1, = . We 
designate this transform as: 
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3. The expression in the third line on (1) 
determines the non-linear functional transform of 

( )XM  normal stationary and stationary-coupled 
processes into ( )XM  not-Gaussian non-stationary 
processes ( )1, 1

tVV iti = , or in other works, into a 

non-Gaussian vector process ( ) tM X ,

~V . The 

distribution density, correlation, and cross-correlation 
functions of the processes ( ) tM X ,

~V  can be evaluated 

through the expressions from [2]. We designate this 
non-linear transform, that includes the parameters  
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We can re-write Algorithm (3.46) in these 
designations as: 
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 (5) 
We can, using (5), write down simulation 

algorithms for fields of higher dimensions purely 
formally, by adding new indices.  

We can formally derive the simulation 
algorithm of a 2D field (a matrix) from (5) by 
introducing a co-ordinate  Y , an additional transform 
X  into Y , and respective indexing of the 
designations: 
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(6) 
Equation (6) can be expanded:  
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where similarly, (1), ttX ,1,1,1,1 ξ=  for t∀ , 

,...4,3,2,1,0,1,2,3... −−−=t  and for t∀  
( ) ( ) ( ) ( ) 10101 ==== YYXX DDDD , ( ) ( )X

l
X
ll DD 1, −= , 

( )XMl ,...2,1= , ( ) ( )Y
p

Y
pp DD 1, −= , ( )YMp ,...2,1= . 

The simulation algorithm of a 3D field (a cube, or 
generally, a tensor) can be derived from (6) by 
introducing a co-ordinate Z , an additional transform 
Y  into Z , and respective indexing of the 
designations: 
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Equation (8) can be expanded:  
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where similarly (1), ttX ,1,1,1,1,1,1 ξ=  for t∀ , 

,...4,3,2,1,0,1,2,3... −−−=t  and for t∀  
( ) ( ) ( ) ( ) ( ) ( ) 1010101 ====== ZZYYXX DDDDDD , 
( ) ( )X

l
X
ll DD 1, −= , ( )XMl ,...2,1= , ( ) ( )Y

p
Y

pp DD 1, −= , 
( )YMp ,...2,1= , ( ) ( )Z

q
Z
qq DD 1, −= , ( )ZMq ,...2,1= .  

The following generalization of the 
simulating algorithms for higher dimensions is 
obvious, due to a very convenient representation in 
Expression (8). 
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