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Abstract 
 
There is a rife problem of premature 

convergence to local optimum in genetic algorithms. 
One of feasible solutions lies in using scaling 
methods. The developed scaling method based on 
exponential function allows to transform individual 
weights relatively to the generation average fitness-
function value. The suitability of weakly-fitness 
individuals decreases divisible by the average value 
before scaling. For individuals with average-fitness 
degree the suitability is hardly changed after scaling. 
The problem of evolution algorithm convergence to 
local extremum is solved by changing weights of the 
most suitable individuals in comparison with new 
weights of weakly-fitness ones. 

 
 
I. INTRODUCTION 
 
There are two reasons of scaling fitness-

function for evolution algorithms as given in [1–3]: 
At-first, to prevent premature convergence of 

genetic algorithms to local optimum. It appears when 
good(not best) chromosomes begin to dominate. For 
example, roulette selection [4] could result after some 
generations to new one including only copies of the 
best individs from initial population.  The cause is in 
selection probability proportionate to fitness-function 
value. As initial generation is usually chosen 
accidentally from whole retrieval area so it will 
hardly ever include the most viable individums. 

Secondly, when generation has sizeable 
heterogeneity but average value of fitness differs 
from maximum for a little [1]. As result average and 
the best individums form almost the same offspring 
amount in following generations. 

The scaling is an appropriate transformation of 
fitness-function. Accordingly to [1–3] the main idea 
of the approach is to decrease suitability of weakly 
fitness individums multiply to the average. The 
suitability of individums with average fitness degree 
should not change after scaling. The congestion of 
well-fitness individs also has to decrease due to new 

smaller fitness degree. There are three main scaling 
methods in sources [1–3]: linear, sigma-trancation 
and power law scaling. Lets investigate it. 

 
 
II. LINEAR SCALING 
 
As shown in [1, 2] new value of fitness-

function is defined by classical formula. 
bfkfg +×=)( , (1) 

where k and b are constants, that should be defined 
empirically. As is well known repetition factor k sets 
the slope ratio of straight line to absciss and the 
scaling factor accordingly. 

 
Fig.1-a  Linear function 

 

 
Fig.1-b Linear scaling  

(the straight line crosses the abscissa in b/k point) 
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The advantage of this approach is in 

possibility of cutting off idividuals exceeding 
generation average fitness degree  

It is necessary to keep up with function value 
to not take on a negative value. For example, after 
scaling new fitness degree less then b/k could be 
changed to zero. 

The disadvantage is that such individuals will 
have the same weight and therefore the same 
selection probability. 

The rate of change for function g(f) is equal in 
any point f as the derivative represents the following 
value: 

k
df
dg

=                               (2) 

 
 
III. SIGMA-TRUNCATION 
 
This scaling method looks like the linear. It is 

based on transformation of fitness-function f to g(f) 
by the following expression [1, 2]: 

 
)()( σ×−+= сfffg avg , (3) 

 
where favg – is the average fitness-function value for 
generation; c – a little natural number (usually from 1 
to 5), seeked in concordance with investigated 
problem; σ – standard deviation for generation that 
could be defined by the following expression: 
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N – generation volume.  
If design data F’ is negative then it puts to zero 

like under linear scaling. The diagram of derivative 
for this function is also parallel to abscissa straight 
line. 

1=
df
dg

 (5) 

Hence in this case the rate of change is like in 
the previous method. 

Lets try a factor c and investigate the changes 
of the fitness degree after scaling on a specific 
example. By way of example look at the problem of 
audience time-table optimization. Let there is an 
initial generation consists of 7 casual individuals, 
which are full-fledged schedule variants for a half-
year in an Institute of Higher Education [5]. There is 
a penalty system to evaluate fitness value for any 
schedule: the penalty for the “gap” in a group or 
teacher schedule, for moving between buildings of 
educational institution during a day, for one lesson is 
out of timetable’s grid, for same lessons during a day 
in a group schedule and so on. Fitness-function (or 
total schedule weight) is a sum of penalties for all 
groups and teachers during both workweeks 
(even/odd). The suitability of any individum 

(schedule variant) is inversely to fitness-function 
value. So the heavier total weight, the smaller 
suitability. New generation will be formed by means 
of individum selection from previous generation with 
successive execution crossingover and mutation 
genetic operators [6]. 

Try to rate the suitability for 6 schedule 
generations being part of the era [7] (a set of 
generations), formed using roulette selection [4] 
(Fig. 2) 

When c=1 the individum total after-scaling 
weight becames heavier then the average before 
scaling. But it is unacceptablly. 

When c=2 the average of fitness-function 
increase on 25-30%. So the suitability decrease on 
the same value. But it is not suit us. 

When c=4 the average of fitness-function 
increase on 60-100%. But it is not also right for the 
definition. 

When c=5 total weight of many individum is 
put to zero (the highest suitability) because of the 
negative fitness-function value. So the selection 
probability of such individums becames equal, but 
for others it becames infinitesimal. 

In such a way it is better to choose c equal to 3 
or 4. Although in all variants individual density stays 
the same (diagram shapes are equal). Hence the 
selection probability is not changed. 

 

Choosing the "c" scaling factor for sigma-
trancation algorithm
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Fig 2. Sutability scaling for 6 generations  

of schedule variants (individums) 
 
 
IV. POWER LAW SCALING 
 
It is the method transforms fitness-function by 

the following expression: 
kffg =)(  (6) 
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where k – is a number near to 1, as mentioned in 
source [1,2]. Usually it is fit empirically depending 
on specific of solving problem. For example, k=1,005 
could be used. 

The derivative for this function is: 
1−×= kfk

df
dg

 (7) 

When k is close to one the function increases 
extremely slow (look at Fig.1). So after scaling her 
shape is changed very weakly (Fig. 4). Hereinafter 
we will use k=1,005 for our task. 

 
The collection of power law functions y(x)=xk
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Fig.3 Collection of functions y=xk for ( )06.1;95.0∋k  

 
 

V. EXPONENTIAL SCALING 
 
The problem of search optimum schedule is 

lead to search for fitness-function minimum as 
individum suitability is inversely to its total weight. 
Since scaling function should be monotonic and 
increasing for any initial fitness-function value so try 
to use exponent besides upper mentioned functions. It 
also complies with definition. 

Lets try to fit scaling factors: 

;ln
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efg f
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 (8) 

where A – is an average of fitness-function value for 
generation (always positive). 

After differentiation we have: 
AAfe

df
dg −+= ln  (9) 

i. e. the rate of scaling-function change increases 
exponentially. 

Now it is necessary to verify how it meets the 
definition of scaling-function from [1–3]: 

1. To prevent evolution algorithm convergence 
exponentially increase suitability of best individums 
decreasing their “density” in that way.  

If we use formaula (8) this condition will be 
met: 

0lim)(lim ln

00
≈= −

>−>−

AA

AA
eAg  (10) 

2. As on definition individual suitability equal 
to the average of generation fitness-function value 
should not be change after scaling. This condition is 
also met. 

AAgeAg AAA =⇒= −+ )()( ln  (11) 
3. Also by definition after-scaling suitability of 

individums with lowest suitability should became 
divisible by before-scaling average value. I.e., for 
example, the following inequality should be true: 

      g(2A)>2A, 
AAeAg ln)2( +=  (12) 

So it is necessary to prove, that 
Ae AA 2ln >+ : 
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 (13) 

In such a way the function will work for all 
generations with fitness-function average value A 
higher than 7.02ln ≈ . If 0<А<ln2 then all more 
suitable individums should be put to zero after 
scaling. 

Now compare the analyzed methods 
evaluating individual suitability by sigma-trancation 
(kind of linear scaling per se), power low scaling and 
exponential scaling. 

After sigma-trancation and power low scaling 
the shape of fitness function is not changed (Fig. 4). 
So the selection probability is not changed as well. 

After exponential scaling the shape of curve 
firstly looks like others, but fitness-function value is 
much lower for well-suitable individums (75% on 
average). However when the suitability is closer to 
the average the curve rises strongly. For individums 
with average suitability the fitness-function value is 
hardly changed. After that the curve rises extremely 
abruptly. In such a way the probabilty of weakly-
suitable individums selection becomes extremely low 
and conversely for well-suitable ones. 

Now create some new generations using 
developed exponential scaling method to evaluate 
individums. By way of initial set the 38-th population 
has been used (the final one from the era on Fig. 4). 
The selection of well-suitable individuals (with light-
weight) rises after scaling, starting with 39-th 
generation. From 33-th to 38-th generation the count 
of “light-weight” and “heavy-weight” individuals is 
almost the same, but starting from 39-th the count of 
heavy-weight individums decrease sharply. Of 
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course, part of heavy-weight individums migrate to 
new population as reproduction strategy is used as 
well. On the whole after scaling the generation 
suitability has increased on 26%. 

 

Fitness-function scaling methods comparing
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Fig 4. Scaling methods comparing  

for 6 population of schedule variants 
 

The influence of exponential scaling on 
selection and generation phenotype
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Fig 5. New era, created on basis of roulette method and 

exponential scaling (initial population - 38) 
 
There is a class implementing exponential 

scaling on basis of derived formula (see fig.6) 

Class TFitnessExpScale has only 4 private 
properties: 

− generationAvgWeight – the generation 
average fitness-function value 

− generationVolume – the volume of 
generation 

− oldWeights – the massive of initial 
weights (fitness-function values for every individual) 

− newWeights – the massive of weights 
after scaling 

 

 
Fig. 6  Structure of class TFitnessExpScale 

 
Also class TFitnessExpScale includes 6 public 

methods: 
− TFitnessExpScale () – constructor by 

default; 
− ~TFitnessExpScale () – destructor by 

default; 
− void setGenerationVolume(int volume) – 

to set generation volume; 
− void setOldWeights(int[] weights) – to set 

pointer for oldWeights; 
− int getNewWeight(int individ) – return 

after-scaling weight for individual with chromosome 
number in oldWeights massive; 

− int[] getNewWeights(void) – return 
pointer for newWeights massive. 

 
 
VI. CONCLUSION 
 
The research results allow to draw the 

following conclusions: 
− the linear scaling and sigma-truncation 

methods proposed in source [1–3] don’t affect the 
shape of generation individums fitness-function in 
contrast to power scaling method. Hence the 
individums selection probability is not changed. 

− the rate of change of exponential scaling 
function is more higher than the rate of power scaling 
function taken from source[1–3]. The selection 
probability increases exponentially with the growth 
of individum suitability after exponential scaling. 

TFitnessExpScale 

- int   generationAvgWeight 
- int   generationVolume 
- int[] oldWeights 
- int[] newWeights 

+ TFitnessExpScale () 
+ TFitnessExpScale (int[] weights, int volume) 
+  ~TFitnessExpScale () 
+ void setGenerationVolume(int volume) 
+ void setOldWeights(int[] weights) 
+  int   getNewWeight(int chromosome) 
+  int* getNewWeights(void) 
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The exponential scaling method allows: 
− to prevent genetic algorithm convergence 

to local optimum due to increase of distance between 
individums congested near the most suitable one 

− to increase the selection probability of 
well-suitable individums 

− to decrease the selection probability of 
weakly-suitable individums 
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