
 16

EDUCATIONAL TOOLS FOR COMPLEX TOPICS:
A CASE STUDY FOR NETWORK BASED CONTROL SYSTEMS

O. Mirabella, PhD, M. Brischetto, A. Raucea

Department of Computer Engineering and Telecommunications

University of Catania
Catania , Italy

omirabel@diit.unict.it, mbrischetto@diit.unict.it, araucea@diit.unict.it

Abstract

Engineering students have to learn a lot of

complex, interconnected topics in order to develop
that multidisciplinary knowledge which is required in
facing problems in their professional activities.
Usually this is understood especially with the job
experience, since during the academic years the
various subjects studied are not always seen as being
correlated. This bring students to underestimate the
importance of certain topics which instead in some
context are crucial. For this reason, developing the
ability to correlate what they have learned in
different disciplines is crucial. This could be
achieved with practical activities such as laboratories,
but sometime is not the simplest way when the
application area is complex and not available in
laboratory. In such situation a valuable solution can
be the use of a suitable educational software. In this
paper we present such a kind of educational tool for
the field of Network Based Control Systems (NBCS).
Our software wants to help students to deal with
NBCS at different level of difficulties, focusing on
one or more of its involved problems. Doing this,
they are stimulated to link their technical background
knowledge, learnt in different subjects, to accomplish
a set of given project objectives.

I. INTRODUCTION

As stated by the "Learning by Doing"

paradigm, learning is greatly influenced by the
experience. In fact, in many fields, knowledge is
better acquired if it is generated actively rather than
read or heard passively. This paradigm is a very
effective learning means, especially for basic
mechanical abilities, even if, in fields which require
complex knowledge and competences, the experience
alone is not sufficient for a full learning. In these
cases, in order to accomplish a full learning, it is
necessary to reason on the experience to exactly
identify what has been learned and to interiorize it, to
be able to manage new and different future situations.

This is particularly important for engineers, because
they are professionals strongly oriented to problem
solving. Therefore, it is very important for students in
engineering courses, to develop the ability to
correlate what they have learnt in different
disciplines. In fact, in their future professional
activities, in facing problems, the solution will be
often found by picking from different
multidisciplinary knowledge. Indeed this is not
always simple to accomplish especially on account of
the scarce cooperation between the teachers of the
different courses in coordinating their teaching
activities and for the limited time available to the
students for each course [1]. This can prevent an
unified vision of the various subjects studied and an
insufficient ability to link them.

A valid help to this integration can come from
the use of suitable educational tools, appropriately
designed to allow students to correlate different
matters when dealing with specific real problems. A
good example of such tools can be represented by
simulator programs, in that, they try to reconstruct
the application context of certain skills. To this aim
simulators have been used in different fields. For
example, in [2], the authors examine the
effectiveness of simulations in teaching international
business, whereas in [3] the authors present an
educational software tool which aims to provide a
graphical front-end to a Java virtual machine (JVM)
with the aim of helping students to learn about JVM
architecture and how it works. Instead in [4] the
authors present a software tool which emulates a
Steam Turbine-based Current Generator with
distributed control, where communication between
the different devices (sensors and actuators) can be
supported by different types of Fieldbuses. All these
tools aim supporting and enhancing the learning
process and promoting the active and constructive
involvement of students.

In this paper we present a multidisciplinary
educational tool which wants to be something more
than just a simulator. In particular it aims to offer the
students a tool by which they can integrate skills
acquired in subjects like "Automatic Control" and
"Process Control" with those learnt in the "Networks
for Process Control" course. All these subjects are

 17

needed in the field of Network Based Control
Systems (NBCS), a sector that in the last years has
grown in popularity [5]. Both hardware producers
and manufacturing company have expressed great
interest on the potentiality of this technology. The
main challenge of a NBCS is to control a remote
process in the desiderate way in spite of the limits
introduced by the network. These limits are
especially represented by the nondeterministic
packets delivery delay which causes a degradation of
the control quality. In particular, the delay time
impacts on the remote system performances lowering
its stability region [6]. Our tool wants to help
students to experiment with such a kind of complex
and articulated system via simulation, being not
simple for them to have one real to work with.

The Network represents a key element of the
tool. As we will see in the next sections, it will be
modelled not only in terms of delay it introduces in
the transmitting packets, but also in terms of
reliability, defined as packet loss probability.

Also remote systems and controllers are other
key elements in our tool. They are implemented by
suitable analytical models. An interesting feature of
this software is that students are not limited to use it
as it is. In fact, being simple to be customized,
students are encouraged to personally add new
modules representing remote systems to control,
controllers and networks. All this, as we will see, aids
the reinforcement of multidisciplinary skills.

The paper is organized as follows: in section 2
a brief description of what is a Network based
Control System is given and the most significant
points are underlined. In section 3 we present our tool
and the learning objectives that we want to reach are
described in details. In section 4 the user interface
and the main functionalities available are presented
whereas in section 5 the software architecture is
discussed. In section 6 the way of learning using the
tool is described. Finally, in section 7 some
conclusions are presented.

II. NETWORK BASED CONTROL

SYSTEM: A BRIEF INTRODUCTION

In fig. 1 the classical block diagram of a

generic Closed Loop Control System is represented:

Fig. 1. Architecture of a Closed Loop Control System

Where the typical components are:
− P(s) is the transfer function of the

controlled system, in the Laplace domain;
− C(s) is the transfer function of the

controller, in the Laplace domain;
− r(t) represents the reference signal, that is,

the desired value for the output of the controlled
system;

− y(t) represents the real output of the
controlled system;

− e(t) represents the error between the
desired and the real output of the controlled system:
e(t) = r(t) - y(t);

− u(t) is the signal, computer by the
controller depending on the value of e(t), to drive the
controlled system in order to cancel the difference
between y(t) and r(t).

As it is well known, the control loop has to
maintain the output signal y(t) of the controlled
system as close as possible to the reference
signal r(t).

The previous diagram refers to an analog
process controller. To-day, most of the control
systems provide a digital control, that is, the
controller is a digital system such as a
microcontroller, a PLC or even a standard desktop
computer. The remaining part of the system can
either be digital or analog. For example, fig. 2 refers
to the case in which the controller is digital whereas
the system is analog:

Fig. 2. Architecture of a Digital Closed Loop Control System

Since a digital controller is a discrete system,
the Laplace transform of the controller has been
replaced with the Z-transform. The interface between
the digital part and the analog one, is made up of
suitable converters. In particular, at the interface
between the output of the digital controller and the
input of the analog system a digital-to-analog
converter (DAC) system must be used. This system,
that we will model as a zero-order hold (ZOH)
converter, must convert a discrete-time signal to a
continuous-time signal by holding each sample value
for one sample interval. The opposite conversion
must be done at the output of the controlled system.
In fact, this output must be converted, through an
Analog to Digital Converter(ADC), to a discrete
value, in order to be comparable with the digital
reference signal. If we consider the controlled system
P(s), together with the ADC and the DAC, we obtain
an equivalent discrete block, Pzoh(z), which takes
into account the dynamics of both the two converters
and the controlled system. The Pzoh(z) must have, at
the sampling intervals, the same values of the
continuous system. With this transformation, the
diagram of fig. 2 can be represented as shown in
fig.3, where only discrete models are considered:

 18

Fig. 3. Block Diagram of a Digital Closed Loop System

In a Network Based Control System, the

controller and the remote system are connected
through a network as represented in Fig4a, whose
effects are not negligible. The block diagram of Fig.
3 in this case becomes as shown in Fig.4b:

Fig. 4a. Block Diagram with delays
in both control and feedback line

Fig. 4b. Representation of a Network Based Control System

In this case, called
τ−z the time delay

operator, and QoS(t) the current quality of service
provided by the network at the time t, with reference
to the fig. 4b, will be:

() ()()tQoSzUckUr r ,τ−=
() ()()tQoSzYrkYc c ,τ−=

where Q is the transmission delay from the controller
to the remote system, and Q is the delay in
transmitting a signal from the remote system to the
controller. These delays and the QoS(t) depend on
different aspects of the network, such as its
bandwidth, network congestion, the network protocol
used etc.

Therefore, as we can see from Fig.4a, the
controller will send over the network a control signal
Uc(k) which arrives to the remote system with a
certain delay. We refer to the delayed signal as Ur(k).
The remote system reacts to the control signal Ur(k),
by performing the required operations which produce
a new state and new output values. Information about
the new system conditions, collected by suitable
sensors, must then be sent back to the controller in
order to close the control loop. As before, the
collected data will be sent as Yr(k), but due to the
presence of the network, they will be delayed as
Yc(k). All these delays can decrease the quality of
control and the controlled system could become
unstable [7].

III. LEARNING OBJECTIVES

The tool presented in this paper has been

designed to allow students to make experiments over
a NBCS of the kind represented in fig. 4. In
particular, it aims to show what are the effects of
different types of network over a NBCS. In the block
diagram in fig. 4 the key elements are the system to
be controlled, the controller and the interconnecting
network. Students can deal with all or some of these
elements. For example new network models can be
implemented and tested, to verify their effectiveness
in this kind of applications, as well as specific
techniques for distributed control.

Of course students should already have some
theoretical knowledge in their background. In
particular is supposed that they have learnt the theory
regarding the analysis and synthesis of closed loop
systems, and are able to define the continuous
mathematical model of a controller, for example in
the form of a PID controller. Usually these
knowledge are acquired in different courses, but has
been seen in our exerience that, because they are not
used in subsequent subjects, often are soon forgotten.
In addition these courses are mainly treated from a
theoretical point of view, not giving enough emphasis
on the practical applications and implementations.

With our tool we want to fill the gap among
theory and practice in the specific field of distributed
control systems, where control theory apply, but
performances are strongly influenced by many factors
not taken into account in the theoretic courses. In
addition, since the controller must be digital, students
should be able to pass from an analog controller
model to a digital one, and must code it as a working
software program. Therefore, our tool can be used in
different ways allowing to obtain various learning
targets.

Students find, already implemented, a suite of
canonical transfer functions of different order for
which suitable controllers have been computed and
implemented in order to impose to the resulting
closed loop system, some specifications, such as the
rise time (the time needed by the controlled system to
reach the desired value), the peak overshoot (the
highest value reached by the system response before
reaching the desired value) and the steady-state error
(the difference between the input reference and the
output of the controlled remote system when the
response has reached the steady state). Students can
choose a transfer function among those present in the
tool and then can select the characteristics, in term of
delay and loss probability, of the network which
interconnects controller and remote system. In this
way they are able to see how this network influences
the system response. Another interesting possibility,
as said earlier, is that students haven't to limit their
analysis to the systems already present, but they can
define new systems, new controllers and new
networks.

It is assumed that students who want to use our
tool have some prerequisite. In particular they should
know:

 19

− the mathematical models of the most
common systems;

− the most typical input functions;
− how to synthesize a continuous controller

given some specification for the system to control;
− how to pass from analog to discrete

domain.
They learn:
− how to code in a programming language

the model of a dynamic system, for example with a
finite difference model;

− how to implement the discrete controller
algorithm in a programming language;

− how to design and implement a network
model;

− how to analyze the simulation results, and
if it is required, how to modify the controller to take
into account the network characteristics.

It is clear that working with this tool involves
for students the stimulation of a set of transversal
cognitive processes. In fact, they have to use
knowledge and skills learned in different subjects. In
particular:

1. System Modelling and Automatic Control:
a. to know, or to be able to obtain, the

mathematical model of a system;
b. to be able to synthesize a suitable

controller to drive the dynamics of a system;
с. to be able to pass from analog to

discrete models.
2. Computer Networks:

a. to know the reference models of the
main network architectures;

b. to be able to define new network
models;

с. to be able to compare and valuate the
characteristics of different network architectures.

3. Software Engineering and Programming:
a. to be able to implement the discrete

models of systems, controllers and networks, by
mean of suitable algorithms.

To reach all these targets, students must be
allowed to integrate in the tool, in a simple way, their
systems, controllers and networks models. The
modular architecture of our software has been
thought with this in mind.

IV. THE NBCS SIMULATOR USER

INTERFACE

The user front end is made up of the main

window represented below:
Using the "Function" menu, the student can

select one of the available systems, characterized by a
certain transfer function in the Laplace Domain.
Three functions are predefined of first, second and
third order respectively plus others representing
specific systems, such as a direct current servo motor
and a linear slider actuator models.

A predefined controller is associated to each
function. Each has been computed to impose a set of

specifications to the system dynamics, in response to
the selected input. The input function is chosen
through the "Input" menu.

Fig. 5.Main Window of the NBCS Simulator

Fig. 6. Some Transfer Functions available to the user

Fig. 7. The Reference Input Signals menu

It is also possible to customize the temporal

behaviour of the input function, choosing
"Customize" and using the "User Defined Input"
Dialog which allow to set the amplitude, period, duty
cycle, maximum and minimum values of the input
reference signal.

 20

Fig. 8. User defined Reference Input Signals

The number of samples can be set using the
"Samples" menu.

Fig. 9. Customizing the number of samples for the simulation

Finally, the network delay/loss can be defined
with the menu Delay:

Fig. 10. Delay models

Three network models are implemented by

default:
− Bernoulli Delay: this item allows to select

a Bernoulli delay model, that is, a packet sent over
the network could be delayed at most of one temporal
slot. It is possible to configure the percentage of
delayed packets from 0% (no delay) to 100% (delay
always);

− Bernoulli Loss: this item allows to select a
Bernoulli loss model. If a packet is lost, the
destination module will continue to use the previous
received value. It is possible to configure the
percentage of lost packets from 0% to 100% losses;

− Exponential Delay: this item allows to
select an Exponential delay model, that is, a packet
sent over the network could be delayed of a random
temporal quantity following an exponential
distribution. It is possible to configure the mean delay
value (in milliseconds).

At the centre of the main window there is a

plotting area where the curves relative to the applied
reference input function u(t), and to the system output
function y(t) are plotted both with and without(ideal
case) delay/loss. Below the plotting area, information
on the actual running simulation are reported as well.
In addition, when the simulation ends, is possible to
display the characteristic values of the system
response, in particular, the rise time, the peak
overshoot, the steady-state error and the settling time,
to quantitatively compare the ideal case and the case
with delay/loss. An example of this feature is
reported below:

Fig. 11.Step response characteristic values

It is also possible to visualize the system

dynamics through another, more realistic, graphical
representation. As an example, fig. 12 shows the
simulated dynamics of a linear slider actuator and fig.
13 shows the dynamics of a DC servomotor. The
representation of the system appears in the space
above the plotting area. The user obtains the system
output curves, and then, these output values are used
to animate the graphical system model in such a way
it follows the computed dynamic.

Fig. 12.Linear slider actuator dynamics

In this way, students are able to follow the
system dynamics behaviour, at the same time, both
on the graphical system model and on the plotting
area, with a new cross point curve being plotted over
the previous one. This should give a better practical
representation of what the plotted values mean for the
real system.

 21

Fig. 13. DC servo-motor dynamics

V. THE SOFTWARE ARCHITECTURE

The software has been developed in C#

express edition using the object oriented
programming paradigm. The architecture has been
thought in such a way to allow a simple
implementation and integration of new modules
which model networks, systems, controllers and input
reference functions. This way students don't have to
deal with implementation problems that are not
strictly related with the learning objectives. In fact,
students who want to add new modules have to work
only on specific classes. The main classes available
for this purpose are:

• NetworkObject: This class is the superclass
of all classes representing a network. It allows to
define a network model, in particular the distribution
functions for packet delay and loss;

• InputFunction: This class is the superclass
of all classes representing an input reference
function. Its attributes allow to define the type,
amplitude, duty cycle, maximum and minimum
values. By default the following function types are
available: SquaredWave, SawTooth, Step,
BinaryRandom, MultilevelRandom;

• TransferFunction: It represents a generic
transfer function. New transfer functions, both for
controllers and for remote systems to control will be
implemented extending this class;

• SimulatorFunction: It represents the main
class of the tool. It uses instances of the other classes
to model a closed loop system and to compute its
dynamic. In particular, depending on the choices
made up by the user via the application GUI, it
creates at first instances of the classes
TransferFunction, InputFunction and NetworkObject
according with the user selected menu items, and
then computes the samples of the system output
variable. These samples are then used to plot the
curves in the plotting area. It also computes the
characteristic values of the system response in term
of rise time, peak overshoot, steady-state error and
settling time.

Fig. 14.The Software Architecture

VI. LEARNING WITH THE NBCS
SIMULATOR

Students can use the software as it is, without

modifications, using the modules already
implemented. In this case the learning objectives is
reached making a set of simulations choosing one of
the systems available and looking at the effects of
different network settings on the dynamic of the
resulting closed loop system.

The other way to use the tool requires a more
articulated work. The starting point is the analytical
model of a system, given, for example, in the form of
differential equations and a set of specifications
regarding the rise time, the peak overshoot, the
settling time and the steady-state error. At first,
students have to use the methods learned during the
Automatic Control course to synthesize an analog
controller able to impose, to the given system, the
desired behaviour. Then students have to pass to the
discrete domain. To do this, they can use suitable
tools like Matlab, or can do the required calculations
"by hand". In this phase the objective is to obtain the
discrete time models of both the remote system and
the controller under the form of finite difference
equations. Then the resulting models have to be
implemented as software modules using the proper
classes. This way, students learn both to implement,
in a computer, the model of a dynamic system and
both to synthesize and implement a suitable digital
controller. Also the network which connects the
controller and the remote system is object for student
experiments. In fact, students can add new
distribution functions in order to characterize the
delay and the loss probability, or the network can be
modelled even in a more complicated way than a
software function. For example a physical testbed,
like that described in [8], could be interfaced with the
software. All this require a previous analysis of the
available network typologies, and the ability to
device new network models conceived ad-hoc for the
particular case study. In addition to the designing and
implementation phases, the critical analysis of the
simulation results with different network

 22

configurations is also very important. Students should
understand the behaviour of the resulting curves, and
eventually they should be able to modify the
controller or network modules to improve the quality
of the distributed closed loop system.

Students who have used the software have
expressed great satisfaction. Not big problems have
been encountered in the start up to get confidence
with the tool being the interface quite intuitive and
essential. The main problems arise when a new
system to control has to be implemented. This mainly
because the theoretical knowledge required to design
and implement the system and controller models are
usually, more or less, been forgotten and students
require a certain time to revise them. This requires
usually a week of home work using text books and
Internet tutorials. Then the revised knowledge is used
to find the analytical model of the assigned system
and to compute a suitable controller. This requires
some dais and often students use Matlab to quickly
validate the resulting closed loop system (considered
without network delay effects). If all works as
expected, then is possible to begin the
implementation of the available classes. To do this, a
Z transformation of the analytical model is computed
and then the finite difference model of the closed
loop system is obtained. This is finally implemented
using the TransferFunction class. During these steps
different skills are used, such as mathematic, process
modelling and programming. This phase need usually
another week of home work, but could be more in
case the student wants also to implement a new
network model or modify one already present.
Finally the NBCS model obtained can be investigated
to see the effects of the chosen design parameters,
such as the sampling interval and the PID constants.
A set of simulation are run, and if the results are not
as expected, the parameters might need to be refined.

Students are asked to produce a report on the
simulations done. This is then discussed with the
professor during an oral exam to see what the
students have learnt. Comparing students who have
used the tool with others in the previous years, there
has been a sensible improvement on these skills as
proved by a major readiness of mind in answering to
specific questions.

VII. CONCLUSIONS

In this paper we have presented an educational

tool aiming to allow students to "learn by doing"

using multidisciplinary skills. In particular, students
have to control a remote system via a Network Based
Control System, being able to satisfy a set of given
constraints. The learning will be more stimulating
and effective because applied to a specific and clear
problem and because the theoretical issues can be
directly applied in practice. The use of simulators like
the one presented in this paper, where students are
not only users of functionality implemented by other
people, allow us to extend the range of learning
objectives. The knowledge acquired in different
disciplines can be put together and used in a precise
application context.

REFERENCES

[1] Portero A.; Saiz J.; Aragones R.; Rullan M.; Valderrama E.;
Aguilo J.; "Adopting New Competences Experience in the
Face of Engineering Learning" 1ST IEEE International
Conference on E-Leaming in Industrial Electronics, 2006 18-
20 Dec. 2006 Page(s):34 - 39 Digital Object Identifier
10.1109flCELIE.2006.347208

[2] Carlyle Farrell "Perceived Effectiveness of Simulations in
International Business Pedagogy An Exploratory Analysis"
Journal of Teaching in International Business vol. 16 Issue 3
ISSN: 0897-5930

[3] Abenza, P.P.G. Olivo, A.G. Latorre, B.L. Miguel Hernandez
"VisualJVM: A Visual Tool for Teaching Java Technology",
IEEE Transactions on Education, vol. 51, Issue 1, pp 86-92,
Feb. 2008 ISSN: 0018-9359

[4] O.Mirabella and A.Raucea, "An Interactive tool for the study
of the Fieldbus impact on a Steam Turbine-based Current
Generator", in Proc. of ICELIE 06, 1ST IEEE International
Conference on E-Leaming in Industrial Electronics,
Hammamet, Tunisia, pp. 119-124, 18-20 Dec. 2006

[5] J. Baillieul and PJ. Antsaklis, "Control and Communication
Challenges in Networked Real-Time Systems" Proceedings
of the IEEE Volume 95, vol. 95, issue 1, pp. 9-28, Jan. 2007
Digital Object Identifier 10.1109/JPROC.2006.887290

[6] Wei Zhang, M.S. Branicky and S.M. Phillip, "Stability of
networked control systems", Control Systems Magazine,
IEEE vol. 21, Issue 1, pp 84-99, Feb. 2001, Digital Object
Identifier 10.1109/37.898794

[7] Tipsuwan, Y. Mo-Yuen Chow "Network-based controller
adaptation based on QoS negotiation and deterioration" The
27th Annual Conference of the IEEE Industrial Electronics
Society, IECON '01, Denver, CO, USA, vol.3, pp 1794-1799,
Year 2001, ISBN: 0-7803-7108-9

[8] L.Lo Bello, O.Mirabella and A.Raucea, "Design and
Implementation of an Educational Testbed for Experiencing
with Industrial Communication Networks", IEEE
Transactions on Industrial Electronics, vol. 54, issue 6, pp.
3122-3133, ISSN: 0278-0046, Dec. 2007.

