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Abstract 
 
In this paper Principal Components Analysis 

(PCA) is used for detecting faults in a simulated 
wastewater treatment plant (WWTP). PCA is a 
multivariate statistical technique used in multivariate 
statistical process control (MSPC) and fault detection 
and isolation (FDI) perspectives. PCA reduces the 
dimensionality of the original historical data by 
projecting it onto a lower dimensionality space. It 
obtains the principal causes of variability in a 
process. If some of these causes changes, it can be 
due to a fault in the process. False detected alarms 
due to measured disturbances are treated using 
Switch-PCA. 

 
Index Terms: Fault detection, Principal 

Component Analysis (PCA), Wastewater treatment, 
Multivariate Statistical Process Control (MSP). 

 
 
I. INTRODUCTION 
 
Actually there are several multivariate 

statistical methods for the analysis of process. Some 
of this methods have recently been used successfully 
for monitoring and fault detection. These methods are 
useful because the safe operation and the production 
of high quality products are same of the main 
objectives in the industry. Classical and advanced 
control techniques have resolved a large number of 
problems, but when a special cause occurs in a 
process, it can not operate under control. The 
development of an industrially reliable online scheme 
for such processes would be a step toward 
effectiveness and robustness. 

Classical Statistical Process Control (SPC) 
uses typical control charts, such as Shewhart charts, 
cumulative sum (CUSUM) charts, and exponentially 
weighted moving average (EWMA) charts for 
monitoring a single variable. When univariate control 
charts are applied to multivariate systems, with a lot 
of variables, the results are improper when a fault or 
an abnormality in the operation occurs, some of these 
charts alarm in a short period of time or 

simultaneously. This situation is produced because 
the process variables are correlated, and a special 
cause can affect more than one variable at the same 
time. Multivariate Statistical Process Control (MSPC) 
uses latent variables instead of every measured 
variable. All these methods use historical databases to 
calculate empirical models that describe the trend of 
the whole system. They are able to extract useful 
information inside the historical data, calculating the 
relationship between the variables. When a problem 
appears, it changes the covariance structure of the 
model and it can be detected. 

Multivariate statistical process control (MSPC) 
approach, and principal component analysis (PCA) in 
particular, have been investigated to face this 
problem. Jackson and Mudholkar investigated PCA 
as a tool of MSPC [8] two decades ago. PCA can be 
described as a method to project a high-dimensional 
measurement space onto a space with significantly 
fewer dimensions [2]. PCA finds linear combinations 
of variables that describe major trends in data set. 
Mathematically, PCA is based on an orthogonal 
decomposition of the covariance matrix of the 
process variables along the directions that explain the 
maximum variation of the data. 

PCA has been studied from two perspectives, 
one of these is the cited MSPC, and the other is the 
fault detection and isolation (FDI) perspective, this 
perspective is discussed by Venkatasubramanian 
[17]. The author divides the fault detection and 
diagnosis techniques in three parts: quantitative 
model-based methods, qualitative models and search 
strategies and process history based methods. PCA 
falls in the third category because it uses historical 
databases to derive the statistical model (PCA 
model). 

The charts most commonly used with PCA 
techniques are Hotelling statistics, T2, and the sum of 
squared residuals, SPE, or Q statistic. The T2 statistic 
is a measure of the variation in the PCA model and 
the Q statistic is a measure of the amount of variation 
not captured by the PCA model. 

The purpose of this article is to implement a 
method for fault detection using principal component 
analysis method and to apply it in wastewater 
treatment plant (WWTP). Theoretical aspects of PCA 
will be presented and the wasterwater treatment plant, 
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the considered faults and the results obtained will be 
explained and discussed. 

There are several groups work in fault 
detection in waste-water treatment plants using PCA 
[14] or using another fault detection approaches [5]. 

 
 

II. PRINCIPAL COMPONENT ANALYSIS 
 
Principal component analysis (PCA) is a 

vector space transformation often used to transform 
multivariable space into a subspace which preserves 
maximum variance of the original space in minimum 
number of dimensions. The measured process 
variables are usually correlated to each other. PCA 
can be defined as a linear transformation of the 
original correlated data into a new set of uncorrelated 
data, so that, PCA is a good technique to transform 
the set of original process variables in a new set of 
uncorrelated variables that explain the trend of the 
process. 

Consider a data matrix mnRX ×∈  containing 
n samples of m process variables collected under 
normal operation. This matrix must be normalized to 
zero mean and unit variance with the scale parameter 
vectors x and s as the mean and variance vectors 
respectively. Next step to calculate PCA is to 
construct the covariance matrix R : 
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and performing the SVD decomposition on R : 
TVVR Λ= ,                                  (2) 

where Λ is a diagonal matrix that contains in its 
diagonal the eigenvalues of R sorted in decreasing 
order ( 021 ≥≥≥≥ mλλλ K ). Columns of matrix 

V  are the eigenvectors of R . The transformation 
matrix nmRP ×∈  is generated choosing a 
eigenvectors or columns of V  corresponding to a 
principal eigenvalues. Matrix P  transforms the 
space of the measured variables into the reduced 
dimension space. 

XPT =                                    (3) 
Columns of matrix P  are called loadings and 

elements of T  are called scores. Scores are the 
values of the original measured variables that have 
been transformed into the reduced dimension space. 

Operating in equation (3), the scores can be 
transformed into the original space. 

TTPX =ˆ                                (4) 
The residual matrix E is calculated as: 

XXE ˆ−=                           (5) 
Finally the original data space can be 

calculated as: 
ETPX T +=                       (6) 

It is very important to choose the number of 
principal components a , because TTP represents the 
principal sources of variability in the process and E  

represents the variability corresponding to process 
noise. There are several proposed procedures for 
determining the number of components to be retained 
in a PCA model as [7, 18]: 

a) The SCREE procedure [7]. It is a 
graphical method in which one constructs a plot of 
the eigenvalues in descending order and looks for the 
knee in the curve. The number of selected 
components are the components between the high 
component and the knee. An example of this graph is 
shown in fig. 2. 

b) Cumulative Percent Variance (CPV) 
approach [18]. It is a measure of the percent variance 
( ( ) %90≥aCPV ) captured by the first a principal 
components is adopted: 
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c) Cross validation. 
 
A. Statistics for monitoring 
Having established a PCA model based on 

historical data collected when only common cause 
variation are present, multivariate control charts 
based on Hotelling's 2T  and square prediction error 
(SPE) or Q  can be plotted. The monitoring can be 

reduced to this two variables ( 2T  and Q ) 
characterizing two orthogonal subsets of the original 
space. 2T  represents the major variation in the data 
and Q  represents the random noise in the data. T2 
can be calculated as the sum of squares of a new 
process data vector x: 

xPPxT T
a

T 12 −Λ= ,                        (8) 

where aΛ  is a squared matrix formed by the first a 

rows and columns of Λ . 
The process is considered normal for a given 

significance level α if: 
( )
( ) ( )anaF

ann
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where ( )anaFa −,  is the critic value of the Fisher-
Snedecor distribution with n  and an −  degrees of 
freedom and a  the level of significance. a  takes 
values between 90% and 95%. 

2T  is based on the first a principal 
components so that it provides a test for derivations 
in the latent variables that are of greatest importance 
to the variance of the process. This statistic will only 
detect an event if the variation in the latent variables 
is greater than the variation explained by common 
causes. 

New events can be detected by calculating the 
squared prediction error SPE or Q  of the residuals 
of a new observation. Q  statistic [8, 7], is calculated 
as the sum of squares of the residuals. The scalar 
value Q  is a measurement of goodness of fit of the 
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sample to the model and is directly associated with 
the noise: 

rrQ T=                                (10) 

with ( )xPPIr T−= . 
The upper limit of this statistic can be 

computed as the next form: 
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where ac  is the value of the normal distribution with 
a  the level of significance. 

When an unusual event occurs and it produces 
a change in the covariance structure of the model, it 
will be detected by a high value of Q . 

 
B. PCA Monitoring 
То implement a monitoring and fault detection 

system based on PCA, it is necessary to consider two 
tasks: 

1. OFF-LINE. Acquire training data which 
represents normal process operations. Scale the 
training data and obtain the scale parameter vectors x 
and s . Carry out SVD to obtain PCA model. 
Determine the number of principal components and 
the upper control limits for 2T  and Q  statistics. 

2. ON-LINE. 
a) Obtain the next testing sample x, and scale 

it using the scale parameter vectors x and s. 
b) Evaluate the 2T  and Q  statistics using the 

obtained PCA model. If one of these exceeds the 
upper limit, this measurement is considered an alarm. 
If there are some consecutive established number of 
alarms, an uncommon event has occurred. 

c) Repeat from step 2. 
 
 
III. APPLICATION 
 
The approach presented in this paper has been 

tested in a simulated wastewater treatment plant 
(WWTP). This plant is based on the COST 
benchmark [1, 3]. This benchmark was development 
for the evaluation and comparison of different 
activated sludge wastewater treatment control 
strategies. The model is implemented using 
MATALAB© and SIMULINK©. 

This model plant utilizes a dynamic model of 
activated sludge process which is known as activated 
sludge model no. 1 or ASM1. 

Fig. 1 shows an overview of this plant. It is 
composed of two-compartment activated sludge 
reactor consisting of two anoxic tanks followed by 
three aerated tanks. This type of plants combine 
nitrification with predenitrification in a configuration 
that is usually built for achieving biological nitrogen 

removal in full-scale plants. The reactor is followed 
by a secondary settler. The settler is modeled as a 10 
layers non-reactive unit. The 6th layer is the feed 
layer. Table I shows the physical parameters of the 
plant. 

 
 

Fig. 1. General overview of the waste water treatment plant 
(WWTP) 

 
The used influent was the dry influent data file 

[3]. In this file, the variation of influent flow is 
between 15000 − 3500 m3/d. The plant, as Fig. 1 
shows, has two reflux:  

1. External reflux, from settler to input, it is 
approximately equal to influent flow. 

Table 1  
Physical parameters 

 
2. Internal reflux, from the last aerated tank to 

input, it is approximately equal to three times the 
influent flow, but it is a controlable variable. 

The objective of the control strategy is to 
control the dissolved oxygen level in the aerated 
reactor by manipulating of the oxygen transfer 
coefficient (KLa5) and to control the nitrate level in 
the anoxic tank by manipulating of the internal 
recycle flow rate. Controllers are PI type. Tab. 2 
shows the principal controllers settings. 

Table 2  
Controllers settings 

 

 
 
The model of the plant is formed by 13 state 

variables. The involved variables are concentrations of: 
1. Alkalinity (SALK). 
2. Soluble biodegradable organic nitrogen (SND). 
3. Ammonia nitrogen (SNH). 
4. Nitrate (SNO). 
5. Dissolved oxygen (SO). 
6. Readily biodegradable substrate (SS). 
7. Active autotrophic biomass (XB,A). 
8. Active heterotrophic biomass (XB,H). 
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9. Particulate biodegradable organic nitrogen 
(XND). 

10. Particulate products from biomass decay (XP). 
11. Slowly biodegradable substrate (XS). 
12. Particulate inert organic matter (XI). 
13. Soluble inert organic matter (SI). 
In this case, three faults have been considered. 

They are not sensors or actuators faults, they are 
faults in the process. The faults considered are: 

− Toxici ty  shock.  This fault is due to the 
reduction of the normal growth of heterotrophic 
organisms. This type of fault can be produced by 
toxic substances into the water coming from textile 
industries or pesticides. This fault is simulated by 
reducing the maximum heterotrophic growth rate 
(μH). 

− Inhabi ta t ion.  This fault can be 
produced by hospital waste that can contain 
bactericides, or metallurgical waste that can contain 
cyanide. This type of fault is due to the reduction of 
normal growth of the heterotrophic organisms and the 
increase in the decay factor of this type of organisms. 
This fault is similar to toxicity shock but it is more 
drastic. In this case, the fault is caused by reducing 
the maximum heterotrophic growth rate (μH) and by 
increasing the heterotrophic decay rate (bH).  

− Bulking.  This type of fault is produced 
by the growth of filamentous microorganisms in the 
active sludge. This phenomenon causes impossibility 
of decantation in the settler. To simulate this fault the 
settling velocity in layer (vsj) is reduced. 

More information about these parameters and 
mathematical models can be consulted in [3]. 

Using this dynamic model the results were 
obtaining in steady state. For this, the plant model has 
to simulate 100 − 150 days in open-loop 
configuration and determines this steady state. Then, 
the simulation in close-loop is simulated 14 days and 
faults are caused in the 7th day. The samples for 
monitoring experiments were taken 100 times per 
day. 

The selected variables to calculate principal 
components analysis (PCA) are the first eleven state 
variables and the effluent flow rate (Q0). The 
concentration of particulate inert organic matter (XI) 
and soluble inert organic matter (SI) are not relevant 
to this study [16]. 

The number of principal components, 
calculated using CPV approach with 95% maximum 
variance level, are five, but fig. 2 shows that seven 
principal components can be a best option because 
they capture more variability of process. 

The process monitoring under toxicity shock 
fault can be seen in fig. 3. Both statistics, 2T  and 
Q , arise their thresholds when the fault occurs. In 
this case, the Q  statistic detects this fault better than 

2T  statistic as this figure shows. 
The inhabitation fault detection is more 

effective than the detection of toxicity shock fault 
because this type of fault is more drastic as it is 
possible to see in fig. 4. Finally, the bulking fault 
detection using PCA is shown in fig. 5. 

 
Fig. 2. The SCREE graph for principal component selection 

 

 
Fig. 3. Toxicity shock fault detection.  

Logarithmic scale for Q statistic 
 

 
Fig. 4. Inhabitation detection.  

Logarithmic scale for T2 and Q statistics 
 

 
Fig. 5. Bulking fault detection. 

Logarithmic scale for T2 and Q statistics 
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IV. DISTURBANCES 
 
Principal Component Analysis (PCA) is one of 

the most popular MSPC monitoring methods. 
However, it has some shortcomings, one of these is 
that PCA is not suited for monitoring processes that 
display non-stationary behavior. Another limitation 
of PCA is that most processes run in different 
conditions and modes. Using conventional PCA 
approach in this type of processes can produce an 
excessive number of false alarms or missed faults, 
because these grade transitions from one to another 
operation mode can break the correlation between the 
variables. Also measured disturbances can be 
detected as faults. 

There are several proposed solutions that deal 
with this open problem, such as multi-scale PCA 
(MSPCA) [13], adaptive PCA (APCA) [18], 
recursive PCA [12], exponentially weighted PCA 
(EWPCA) [11], dynamic PCA [10] and Nonlinear 
PCA using autoassociative neural networks [9]. 
These proposed solutions fall in three different 
categories [6, 15]: 

1. Build a PCA model for each operation mode.  
2. Update the model to reflect the changes in 

the operation modes.  
3. Develop a conventional PCA model to 

account for all such changes. 
The proposed application can run under three 

different weather conditions: dry, rain and storm 
weather [3]. The example treated above was 
simulated under dry weather condition. When the 
conditions are rainy or stormy, the disturbances due 
to big volume of influent flow are detected as a fault 
by both monitoring statistics. Fig. 6 shows a false 
fault detection when the weather are rainy. 

 
Fig. 6. False fault detected due to rain weather 

 
In this case the used method to face with this 

limitation falls in the first direction: build a PCA 
model for each operation mode. Two PCA models 
are built: one PCA model for dry weather and another 
PCA model for rainy and stormy weather. 

A switch structure can be used to decide what 
PCA model has to be used to monitor the process. In 
the monitoring phase for each new sample the switch 
structure checks the measured influent flow and 

applies the corresponding local PCA model and 
upper limits of T2 and Q statistics. This technique is 
called Switch-PCA [4].  

In fig. 7 the plant under rain weather is 
monitored using Switch-PCA. In this case when the 
volume of influent flow is greater than a threshold the 
switch structure changes the current PCA model for a 
PCA model corresponding to a rain weather 
conditions. In this case, the false fault due to rain 
weather is not detected. 

 
Fig. 7. Rain weather monitoring using Switch-PCA 
 
 
V. CONCLUSIONS AND 
     ACKNOWLEDGEMENTS 
 
This work proposes an approach to face  

the fault detection using statistical techniques, 
concretely, the principal component analysis (PCA). 

The approach has been proved in a simulated 
waterwaste treatment plat (WWTP) based on the 
COST benchmark. The considered faults are critical 
process faults that affect some plant parameters. Data 
are collected from the plant for normal conditions in 
order to calculate the PCA model and the thresholds 
of the T2 and Q statistics, used in order to detect the 
faults. 

Finally, the false faults due to measured 
disturbances are faced using a technique based in a 
switching structure. Off-line, different weather 
conditions are identified and a PCA model is built for 
each weather condition. On-line, the current weather 
condition is detected and it is monitored using the 
corresponding local PCA model. 
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