

INTEGRATING IEEE 802.15.4 – BASED SENSOR NETWORKS
IN INDUSTRIAL PROCESS CONTROL

Emanuele Toscano, Mario Collotta, Salvo Vittorio

Department of Computer Engineering and Telecommunications

University of Catania,
Italy

etoscano@diit.unict.it, mcollotta@diit.unict.it, svittorio@diit.unict.it

Abstract

This article explains and analyses a technique whose

goal is the integration of control process technologies with the
functionalities of a WSN (Wireless Sensor Network) based on
IEEE 802.15.4/ZigBee. We describe a set of sample scenarios
in industrial applications where we could use WSN and real
time to monitor critical processes. Then, a system design and
implementation overview is developed that covers our network
architecture and some design and implementation issues.

Index Terms: Process Control, RTAI, ZigBee, IEEE
802.15.4, Wireless Sensor Networks.

I. INTRODUCTION

In embedded industrial automation and process

control applications increasing use is being made of
wireless communication devices instead of, or combined with,
traditional wired connections. Wireless systems are in great
demand due to their flexibility. Devices can be rapidly installed
without the added cost and time required by the installation of
cables. Wireless technology is even more advantageous if
installations are temporary. Of the various systems available,
802.11 [1] and Bluetooth (ВТ) [2 – 4] seem particularly suitable
for process control applications. Growing interest has recently
been shown in ZigBee [5] or IEEE 802.15.4 [6, 7] for use in
embedded applications requiring low data rates and low power
consumption. Process control systems represents a class of
real-time applications that provide large benefits for
industrial companies. Many of the attempts aim at eliminating
cabling in the industry environment and replace them with
low cost wireless technologies that need less maintenance and
provide a better power management but require more
software complexity. Sensors are essential to Industrial
Automation (IA) providing a link between control systems and
the physical world where they are applied. New hardware and
software for control systems are creating many new
possibilities for automation but cost-efficient use of sensors is
restricted in industrial applications by:

− the expense of wiring and maintaining sensor
networks,

− the safety and regulatory obstacles to running
cables in constricted or dangerous areas,

− protocol incompatibility between various sensor
types,

− the high cost of installation,
− the high failure rate of connectors.
These are just some of the factors driving users to

investigate wireless alternatives. For the industrial
applications, the systems must require operations with
minimum operator intervention. For a wireless network, this
takes to a system that is self-organizing and self-configuring.

Also Real Time techniques are widely used in
industrial production area especially for control process. The
activities that mainly need a real time elaboration are:
regulation and control of chemical and nuclear factories,
control of complex production systems, industrial
automation, industrial monitoring systems. Goal of Process
Control is to check continuously all the steps of the
production. In some of them the attention is mostly
concentrated on one parameter: the criticality. For example in
manufacturing or petrochemical automation the first issue that
has to be guaranteed is the security for all people who are
working there.

There are also some particular steps that need a
continuous checking. In these steps Real Time techniques have
to be used to guarantee security. For Example the chemic
reactions of some liquid need a real time monitoring to
check the toxic level and some special communication
techniques to avoid the block of the chemic processes because
of external events.

Three points are essential in these cases:
− accuracy of the process monitoring;
− stability in all steps of the process;
− reactivity of the system to particular events.
In these three points software and hardware

technologies play an essential role. In fact all the automation
company every year invests a lot of money in hardware and
software solutions to minimize the total cost of the production
and maximize profit and safety. However, there are cases where
more practical and cost-effective network deployment could
be achieved by wireless networking, i.e., when data is less
critical. For example, a pervasive Wireless Sensor Network
could be deployed over and beyond the field, so that different
hard real-time control cells could be connected among them
and also with a set of shared external sensors.

Our aim is to develop an application where we can
gradually integrate the wireless communication potentialities
in the context of real-time process control.

 81

mailto:etoscano@diit.unict.it

II. APPLICATION OVERVIEW

Goal of this paper is to realize an application that

integrate IEEE 802.15.4 –based Sensor Networks in Process
Control Automation Systems to handle asynchronous events
that does not require hard real-time guarantees, as well as to
enable affordable data dissemination. A similar approach can
lead to multiple benefit, as it would be possible for each cell to
access global parameters thanks to local sink nodes deployed in
each cell (Fig. 1). These parameters may be external or
internal, e.g., winds, tides or seismic events, as well as
status of machines, warehouses or plants. These parameters
will be all available with extremely low cost compared with
current installations, they can be transmitted to the requesting
devices or collected for historical analysis.

 82

Fig. 1 WSN Architecture

Currently the only available standard for control

networks is ZigBee [5]. Besides, it also requires a low power
consumption and cost. ZigBee's current focus is to define a
general-purpose, inexpensive, self-organizing mesh network
that can be used for industrial control, embedded sensing,
medical data collection, building automation, home
automation, etc. The resulting network will use very small
amounts of power so individual devices might run for a year
or two using the originally installed battery. However,
critical parts of process control may still need hard real-time
networks and operating systems for maximum reliability and
timeliness guarantee. Thus, our solution is to integrate WSN
model of data dissemination [13, 14] with hard real-time
process control in a two tiered solution. The first tier is made
up of the hard real-time control system that consecutively
executes a control loop, while the second tier is the less

critical but pervasive ZigBee network. As WSN nodes may
notify changed operating conditions to which the control has to
react, low response time are desirable, but without interference
on hard real-time control. For this reason data acquisition from
ZigBee motes is scheduled within the hard real-time operating
system.

III. SIMPLIFIED MODEL

This paper shows our implementation of a simplified

model of WSN integrated in process control. We decided to
divide our application in two parts:

− Hard Real Time?
− Soft Real Time.
The former part has in charge to handle processes that

need time guarantee with a Real-Time scheduling protocol.
In particular we used the Earliest Deadline First (EDF) [8]
algorithm, that has been proved to be an optimal scheduling
algorithm for uniprocessor systems [9]. That is, if a collection
of independent jobs, each characterized by an arrival time, an
execution requirement, and a deadline, can be scheduled (by
any algorithm) such that all the jobs complete by their
deadlines, the EDF will schedule this collection of jobs such
that they all complete by their deadlines. So, compared to
fixed priority scheduling techniques like rate-monotonic
scheduling, EDF can guarantee all the deadlines in the system
at higher loading. With scheduling periodic processes that
have deadlines equal to their periods, EDF has a utilization
bound of 100%. That is, EDF can guarantee that all deadlines
are met provided that the total CPU utilization is not more than
100%.

Thus we created a set of high real-time tasks that
emulate a typical process control loop.

We decided to implement this part using RTAI (Real-
Time Application Interface) Linux [10], developed by
Politecnico di Milano. This library is native to work in kernel
mode and it is in a experimental level. Including this library on
linux bring us to a new version of linux kernel (Real-Time).
RTAI introduces a new level called RTHAL (Real Time
Hardware Abstraction Layer) between hardware and kernel
linux. RTHAL includes all critic functions in an unique
structure to be able to handle them according to the real time
scheduling policy. RTHAL has the role to intercept the system
call and redirect them to the function that it includes (Fig. 2).
If RTAI is not ACTIVE we will have the normal linux kernel,
instead if RTAI is ACTIVE only real time functions can access
to the hardware. In this case Linux is handled as a normal
process with low priority.

RTAI extends the functions of the normal Linux
Kernel, but it does not need to be loaded at system boot, as
RTAI is composed by some kernel modules that could be
loaded using linux command "insmod". RTAI can also be
used in User Space mode, through the LXRT library. In User
Space the portability of the real time processes can be
improved, as in this level they are independent from the linux
kernel in which they were realized.

The second tier of our system is based on ZigBee
technologies to exchange control information. We adopted the
RF ZigBee modules provided by Maxstream (now Digi),
called XBee [11].

 83

This level is developed to handle some aperiodic events
during the real time processes execution. Let's consider a
factory divided in working cells. Each room has its sensors
network that monitors the critical processes in the cell and
also there could be a shared WSN to have a global view of the
entire environment. Local data can be disseminated thanks to
the shared WSN. This could be useful to communicate and
exchange data when aperiodic events happen in cells or to
periodically transmit the status of equipments.

Fig. 2 RTAI Architecture

Fig. 3 Industrial scenario

Possible aperiodic events could be:
− heartquake,
− voltage spike,
− fire alarms,
− gas/liquids outflow.

Once the monitor station receives these alarms from
the ZigBee modules set as trasmitters (connected directly either
to field sensors or to the shared Sensor Network), it sends a
signal to the appropriate actuators that will handle the
situation; for example it could block the machines present in
the room where the dangerous events happened.

RF modules belonging to a cell can be either
Transmitter or Receiver and create a star-shaped network where
modules used as Transmitter are referred to some aperiodic
event (Fig. 4); for example we could associate to them some
sensors that give data when some aperiodic events happen. In
order to save energy, several sleep modes can be used, that
enable the RF module to enter states of low-power consumption
when not in use. In this case the ZigBee module that was in
sleep mode resume and send a packet to the centralized RF
Module set as Receiver

Fig. 4 Transmission scheme

The Receiver could be associated, in the example
described above, to one sensor to measure the current state of
the toxic level and it can apply the right actions based on the
current value of that sensor. Receiver's action may depend on
the current state of the critic process.

For example if the presence of some people is
detected near the room where the chemic – toxic reactions are,
the receiver would receive that event from the RF Module
connected to the door and if the current state of the monitored
critic process is in a level dangerous for people (e.g. if
concentration of toxic substance is upon a threshold) it will
fire an alarm and possibly do an action such as the block of
the door.

Besides data transmissions, the second tier implements
also ZigBee modules configuration of the most important
paramteres, such as:

− dynamic number of transmitters,
− the address of transmitters and receiver,
− the radio channel where transmitters and receiver

have to work. It depend on the ZigBee chip used (0x0C -
0x17 for XBee-PRO, 0x0B – 0x1A for XBee).

We used for our application ZigBee Pro chip for
the Transmitters and ZigBee chip for the Receiver, and we set
a common channel for their communication.

IV. CODE PROGRAMMING

To implement our model we decided to use RTAI for

the Hard Real-Time part and the API mode of XBee ZigBee
modules [12] for the Soft part, as described in the previous

 84

paragraph. Communication with XBee modules is implemented
as an hard real-time task working in user mode. We
created a configuration file where we can modify the scenario
of our environment. We implemented several hard-real time
tasks that model critical process control (tier one). We also
decided to implement communication part (tier two) as a
periodic task in the Real Time part of our application to be
able to handle better some parameters in user mode, as RTAI
was developed to work in Kernel mode. Fig. 5 is an example of
LXRT code:

Fig. 5 Example LXRT-RTAI code

LXRT is the library, included in RTAI, for the

User mode setup ("rtai_LXRT.h").
To work well a LXRT task has to realize the following

steps:
− Set the scheduling to FIFO policy that let us to have

better performances.
− Create a link to the agent that deal with real time.

In such way the LXRT delegate this agent for the real time
system calls.

− Disable the RAM paging before to enter in hard
real time mode (by calling a proper function), because the real
time process can't be stopped from accesses to the memory. In
this way code and data of processes are maintained in
RAM.

− Activate the hard real time mode in which the
process is removed from the linux running-queue and
scheduled by RTAI scheduler. The normal linux processes are
executed only if the RTAI scheduler has no task in execution.

− Execute the real time code.
− Go back to the soft real time mode (by calling a

proper function) where the process is inserted back to the linux
ready-queue and considered as a normal linux process.

− Delete the agent before to finish the execution to
free the memory and to avoid faults, instability and
inconsistency.

In the first step we need to create a set of tasks that
have to work simultaneously, so we forked the father process.

for (i = 0; i <NTASK-1; i++) {
 if (!fork())
mytask_name = i

Here NTASK is the task number that we want to use and

the variable mytask_name is a integer that we need for the init
function in RTAI to give an unique name to it. The next
function so is the creation of RTAI task in User mode:

RT_TASK* rt_task_init (int name, int priority, int stack_size,
int max_msg_size)

This function creates the real time agent as extention
of the calling process. The priority defined in the function is
referred to the execution handled by the RTAI scheduler. In
our implementation however this parameter is not too relevant,
as we set the priority by the value of process Deadlines.
RTAI Init function so extends the Linux task structure,
making it possible to use RTAI APIs that wants to access
RTAI scheduler services. It needs no task function as none is
used, but it does need to setup an RTAI task structure and
initialize it appropriately as the provided services are carried
out as if the Linux process has become an RTAI task also.
Because of that it requires less arguments and returns the
pointer to the RTAI task extension that is to be used in related
calls.

After the creation of RTAI agent we need to switch
in hard real time mode by calling the following function:

rt_make_hard_real_time ();

By calling rt_make_hard_real_time() a task suspends

itself so that another schedulable Linux objects is switch in
(full preemption). As soon as the new task is switched in, the
RTAI task switching is called, without even exiting the just
called Linux "schedule" function and the RTAI tasks is
resumed in real time hardened mode. When it has nothing to
else do, it will call RTAI reschedule and such a function
 will schedule a Linux object again. Notice that, full
interoperability of Linux/RTAI context switches is assured
by a common context switch function available in Linux
sched.c.

Subsequentely we use:

rt_task_make_periodic(mytask, time, period);

Here mytask is the result of rt_task_init();

rt_task_make_periodic makes a task run periodically by
marking the task, previously created with rt_task_init(), as
suitable for a periodic execution, with a period period, when
rt_task_wait_period() is called.

The time of first execution is defined through
startjime function {start_rt_timer previously declared)
that is an absolute value measured in clock ticks. The timer is
the main step to allow having deterministic timing constraint
inside the RTAI created task. The timer can be started
or stopped with API defined in "rta_sched.h". At this point
to implement EDF scheduling RTAI provides a function
called:

rt_task_set_resume_end_time (resume, end);

 85

It set the absolute instant of resume and deadline of a
RTAI process. This process is descheduled and when it
resume it is inserted into the scheduler queue according to the
deadline. If we specify negative parameters it is possible to set
a resume related to the previous one and a new deadline
related to the actual resume value.

After this step start the real time code. To emulate
the examples previously discussed we wrote a function as
real time code that take the CPU and work on it.

for (i. = 1; i <= cycles; i++) { printf("Init job \n");
for(j = 1; j <=cydes_1; j++) {
printf("CPU work\n"); CPU_Emulation (mytask_name);
 }
 }
void CPU_Emulation () {
printf("INIT TASK %d \n",mytask_name);
for(j = 1; j <=cydes_l; j++) CPU_operation;
printf("END TASK %d \n",mytask_name);
rt_task_set_resume_end_times(-resume, -

deadline);
 }

Once that real time processes had finished their work

we need to stop the timer that sets the timer back into its
default mode (periodic). Finally when a task is exiting or hard
real time is not needed any more we should call the
rtai_make_soft_real_time() function following it with
rt_task_delete() that is used to detach RTAI from the Linux
task structure.

This API, in User space, can also be "forgotten" and
RTAI will clean everything by itself, but it is strongly
suggested to delete a task inside your own code to avoid any
side effect.

rt_task_delete(mytask_name);

The following image gives the idea of our EDF

scheduling described above.

Fig. 6 RTAI EDF Scheduling

The soft real part of our application is based on ZigBee
communication as described previously/ In our scenario
implementation, supposed an aperiodic event occurs, the RF
ZigBee module (Transmitter) wake up and it will send a
packet data to the another RF module set as receiver.

For the serial communication we implemented a set
of С functions that communicate through RS-232 serial
connection using the built-in API protocol of the XBee
modules. The most important functions are presented below:

− xbee_sleep, puts a node in deep sleep state;
− xbee_wake, wakes up a node from sleep;
− xbee_AT_get_param, reads a configuration

parameter from a XBee module;
− xbee_AT_setj>aram, sets a configuration parameter

into a XBee module;
− xbee_transmit_16, transmits a data frame using

short 16-bit addressing format;
− int xbee_receive_apijrame, fetch and decode a

received API frame.
Notice that also the xbee AT set and get function

actually do not use AT commands, but API frames that
wraps the same AT commands described in the reference
manual of XBee modules that can be used into AT mode. For
example:

xbee_AT_set_param (port, "MY", adr, size (adr))

calls the "MY" command, that set the address of a XBee
module.

The receiver never goes in sleep because it has to
monitor the hard real time processes and it has to react if
transmitters will send data. Based on the source, the message
type and the current state of the hard real time processes
receiver will decide the correspondent action; for example it
could be not to open the door and display "Access Denied"
to whom wanted to enter the room when high concentration of
toxic substances is detected. For our emulation, the decision
was based on a simple if-else statement:

If(j equals mytask_name in execution) Do_Op_A();

//function that emulate
 //the critic action
else
Do_OP_B () ;

Either the scheduling part or the ZigBee part was tested

on a single Laptop dual core using Ubuntu 7.10 Gutsy and
RTAI 3.6testl.

The scenario developed was composed of 2 RT TASK
with EDF Scheduling; 2 TX and 1 RX using RF ZigBee
modules. The response of RTAI suffers of some bug solved
case by case when they occur and it is difficult to work with it
because most of the documentation about functions, kernel
and user is still not completely available.

V. CONCLUSION

The design and emulation of a wireless sensor

platform targeted for process control systems was
discussed and presented. The environment presented is a
semplified version of a real industrial application, but our

application could be easly extended. Extended testing of the
integration model lets us believe its applicability in a real
industrial environment reducing the global cost of the factory
(self-mantaining, self-configuration) and maximizing the profit.

REFERENCES

[1] IEEE 802.11, Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications, Standard, IEEE,
Aug. 1999.

[2] Bluetooth SIG. Specification of the Bluetooth System -
Version LIB, Specification Vol. 1 & 2, Feb. 2001.

[3] Bluetooth SIG, "Bluetooth Core Specification", Nov. 004.
[4] M. Collotta, L Lo Bello, O. Mirabella, "Deadline-Aware

Scheduling Policies for Bluetooth Networks in Industrial
Communications". In Proceedings of the IEEE Second
International Symposium on Industrial Embedded Systems -
SLES'2007, Lisbon, Portugal, 4-6 July 2007, pagesl56-163,
Digital Object Identifier 10.1109/SLES.2007.4297330.

[5] ZigBee Alliance, http://www.zigbee.org.
[6] 802.15.4 - 2003 IEEE Standard for Information Technology-Part

15.4: Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low- Rate Wireless Personal
Area Networks (LR-WPANs), IEEE, Oct. 2003.

[7] 802.15.4 - 2006 LEEE Standard for Information technology-
Telecommunications and information exchange between

systems— Local and metropolitan area networks— Specific
requirements Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless. LEEE, Sept. 2006.

[8] C. L. Liu and J. W. Layland. "Scheduling Algoritms for
Multiprogramming in a Hard-Real-Time Environment", Journal
of ACM, Vol. 20, No. 1, January 1973.

[9] Michael L. Dertouzos. Control robotics: the procedural
control of physical processes. In Proceedings of IMP
Congress, pp. 807-813, 1974.

[10] RTAI Official Website, available at
https://www .rtai.org/

[11] Maxstream Official Website, available at
http://www.maxstream.net/

[12] Maxstream XBee/XBee Pro product manual, available at
http://ftp 1 .digi.com/support/documentation/manual xboem-
rf-modules_802.15.4_v1.xAx.pdf

[13] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A
survey on sensor networks, IEEE Commun. Mag. 40 (8)
(2002) 102-114.

[14] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting
the world with wireless sensor networks. In International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2001), Salt
Lake City, Utah, May 2001

 86

