

LOKI ++: A PETRI NETWORKS SIMULATOR
FOR PERFORMANCE EVALUATION

Paolo Giuffrida

University of Catania

Italy
yattapaul@katamail.com

Abstract

In this paper, Loki ++ a Petri Networks

simulator is presented. The program, implemented in
C + +, aims to create and analyze models which
represent simple or complex systems relating to
different fields of study.

In addition to graphic design of the network,
the tool also allows the simulation of a system, and
the monitoring of its evolution. The Petri Networks
simulator is a useful tool for performance evaluation
of a system. It allows us to know what the system can
offer under certain operating conditions, in order to
delimit the application area where it can be used
successfully.

Finally the program is applied to study a
model for Bluetooth characterized by 7 Slaves.

I. INTRODUCTION

Petri Networks, proposed in 1962 by Carl

Adam Petri, are a powerful tool for the description
and analysis of concurrence and synchronization in
parallel systems. They represent a formalism widely
used to model and describe the dynamic evolution of
parallel, not deterministic processes.

In the description of a process (production,
organizational, etc.) often we need to represent sub-
processes or activities that may be performed
simultaneously, that is, in parallel with each other,
but not independently of each other: it could
happen that a given passage or a certain phase of the
process may not occur or can not be activated until
other phases or activities are completed or not occur
for certain conditions.

There are two main reasons that make Petri
Networks useful: first they allow us to give the
model of a system in a rigorous form in order to
remove any ambiguity in the representation. This is
important for the analysis and verification on the
behavior of the system. Second, the Petri nets
formalism is liable to a graphical representation
which is rather spontaneous.

The constituent elements of a Petri Network
are: places, transitions and arches. [1, 2]

The place can contain one, zero or more
tokens, represented by a bullet inside the circle,
which means that the semantic condition is valid.
The totality of the marked places describes the status
of the process.

The transition instead represents the "active"
component; an event which changes the status of the
network. A Petri Network evolves through the
firing of its transitions. A transition "fires" when
all of its input places are marked. When a transition
is activated, tokens are removed from the places
before the transition and they are placed in each of
the output places of the transition.

A particular type of networks place/
transition (P/T) are timed Petri nets.

The ordinary Petri nets does not include any
concept of time. With this class of networks, it is
possible to describe the logical structure of a system,
but not its temporal evolution. Various extensions to
the networks are created to introduce the variable
time.

In general, there are two distinct types of
timed networks:

Deterministic Petri Networks where X is a
variable defined which represents the time of
completion of the activity. The transition which
represents the activity after being empowered is
such that the departure or the shooting will not be
immediate but will depend on the time in x. [3]

Stochastic Petri Networks where X, defined
on a generic transition, is not a deterministic, but it
is in fact a random variable representing the feature
"use" of the transition.

Adding the specific time, Petri Nets, PN, are
used for the Performance; Petri nets simulator is a
useful tool for the evaluation of processes and
networks. [3]

The paper is organized as follows. In the next
section we describe the architecture of the
simulator. In Section III we will discuss the
implementation of the software. In Section IV we
state our graphical interface about Loki + +. In
Section V we describe the application example of a
Bluetooth network. Finally, in Section VI, we state
our conclusions and give directions for future work.

 25

mailto:yattapaul@katamail.com

II. LOKI ARCHITECTURE

An initial analysis about the problem

showed the main needs in the development of the
project Loki: the possibility to use Petri nets in all
their aspects and the need to make the simulation
speed. In particular, for the second requirement, it
was noted as major delays occur in the functions
dedicated to the display of the network and its
animation; so a study on the method to optimize the
most critical functions has led us to the conclusion
(confirmed by result) that the faster method for
viewing was to create a single class containing the
various characteristics of representable objects and
to insert all instances in a single list so they can
recall in a single for cycle.

Is now shown the block diagram of the Loki
simulator.

There are at top two classes Object and Token.

The Object class contains all the elements of the
network: place, transition and arc that go along
with a token together in the "engine" of the
simulator. At the end of the simulation the program
creates a file showing the "history" of each token:
you can see the places and transitions cross, and the
time used to run.

III. SOFTWARE IMPLEMENTATION

Let's go to analyze in detail the features of

the simulator and the criteria used for the
deployment.

The code was written in C ++ using the
functions offered only by Windows API and the
STL, a standard library which exports templates of
items such as lists, queues, stacks.

In DrawObject.cpp class, as mentioned above,
there are all the different characteristics of
representable objects: places, arcs and transitions.

All instances of this class are then inserted into
a single list:

Each DrawObject object contained in the list

OL, exports a method Draw. With this method you
can, knowing the type (Type is a member of the
class), draw the object:

To make the simulation we have preferred to

use a thread so that the same simulation was
performed independently by button interface:

IDC_BUTTON_RUN is a message sent from

the press of the key RUN; g_Run function only
serves as an interface between the thread and
function Run in the Loki class. This does nothing
more than calling the Step function cyclically and
checking that the simulation is not finished.

Step function is the heart of simulation; to
make clear development is convenient to use a C-
like language:

Within the function Step cycles, in this new

version of Loki, the various information needed to
know the "history" of each token are stored. For each
token on our Petri network the program creates a new
object from class token.cpp. Each shift from a place
or a transition is stored in the variables of the class
Token: int IDPlaces [100] and IDTrans int [100], so
that at the end of the simulation we know the
entire trace of tokens with their time.

In creating the file report, we have chosen the
best format so you can easily import and modify the
file through Excel.

 26

IV. GRAPHICAL INTERFACE

Let's go now to analyze the graphical

interface of our simulator. The main window is
shown in the next picture.

We note first that the graphical interface
presents only two drop-down and, under these, a
great toolbar.

Indeed, the program has been designed
especially for use with mouse and through the use
of buttons. Under the buttons, we find the work
area to draw our Petri network and where the
various simulations and analyses will be
performed.

This latest version, unlike the previous ones,

was developed with the goal of implementing new
types of advanced features which allow the
possibility to obtain more detailed information
regarding the results of a simulation on a generic
Petri network model studied by the user.

We have to pay attention, at this point, some
properties of the simulator.

When we draw into the work area of the
simulator the Petri Network to be examined you can
set certain properties of places, arches and
transitions.

The folder properties, which is activated by
the same name icon allows you to change some
settings of the elements already drawn in according
to the properties of Petri nets extended or stochastic
generalized.

Once we activate the window, we can notice
that it is divided into three parts or dialog windows:

Properties, Places and Transitions.

The first dialog window shows the properties
for any object within the workplace, after the
selection, making distinctions between the various
objects and their characteristics. If you select, for
example, a place you can see its features and
possibly you can change them. Selecting a place the
features will be ID, Name (which are present for all),
and Token. ID is not changeable and chosen by the
program, while Name, which can be by default,
need to give a mnemonic identifier to the object.
Token needs to indicate the quantity of token in that
place. In addition there is the possibility to select
the View Mean Time option in order to calculate the
average number of steps per second in place, this
option is present also with the transitions.

It includes a further option, Set Traffic
Generator that allows you to create a traffic
generator for the token.

 27

In the case of selection of a transition as well
as ID and Name options will be present Time, and
Priority Status. Time is the time in seconds of
timeout that we should wait before shooting the
transition. Status simply indicates if the transition
at that time is enable to shoot or not, while Priority
indicates the degree of priority, as a natural number,
if it is in conflict with another transition. In addition
you have the option to change the network in a
stochastic network with the option Exponential Time
timeout that associates as a random number
generated by the exponential distribution with the
average value indicated in Time.

You can also upload from a file the time of
transition with or without ACK clicking the option
Load Time With ACK From File or Load Time From
File.

Finally if we choose arc you have this
options: Weight, Status and Probability. Weight
obviously indicates the weight of the arc; it indicates
the number of arcs which start at one place and go to
a transition. Status is similar to transitions and
Probability indicates the probability of choosing that
path in the event of conflict. You can create also the
inhibitor arc with the option Inibitor Arc, you can
also load the files of time with the option Load Time
With ACK From File.

The other two dialog windows, Places and
Transitions, respectively indicating the lists of all
places and all transitions. In the Place dialog
window there are the ID and Name and also the
number of tokens and the transition that they are
input (Transition ID). In the Transition dialog
window is indicated, ID, Name and places of entry
and exit (PlaceIN) (PlaceOut) and the shutter time.

Let's see how you run the simulation. Once
the model is created and initialized with the token
and the other variables that we want to measure, it is
ready to be analyzed by us. The Simulation window
looks like this:

To make the best vision of simulation by the

user you can adjust the speed of animation.
Also we have added the buttons Conflick

Check which colours blue arcs that during the
simulation are involved in the conflict and resolve
the conflict in accordance with the characteristics of
the designed model. You can also, at will, reset the
time that is elapsed whenever you want to start again
thanks to the simulation Reset button.

We conclude by outlining the features of the
last button and the latest utility of Loki. The
functions are: the view of the conflict (Check
Conflict), the view average values (Results) and the
ability to analyse the time between two transitions
with the creation of a special arc (Fire2Fire).

The first, Conflict Check, is used before
making a simulation of a model already designed.
Once the button is pressed a table displays with all
the places that generate conflict, the kind of conflict
resolution and transitions with which they bind. In
addition, the places with conflict are coloured blue
and, by right clicking, we can interact by choosing
the type of conflict resolution. This choice may be
made with the property only after pressing the button
Conflict Check from toolbar.

The other button is very simple and should be
used after the simulation, it shows the average number
of steps that have been performed during the
simulation, in the places and transitions that were
chosen for analysis with the option View Mean Value
from Properties window.

Finally, we can create a special arc with the
last button. The procedure for the creation of this arc
is the same as that already seen, only his final
appearance is different because it appears as a grey
dashed line between two transitions. The results can
be viewed only after the start of the simulation. The
result can be seen by double-click on the arc that will
show a window.

V. APPLICATION EXAMPLE

The term "performance evaluation" means

a set of activities aimed to determining the

 28

characteristics of a system on the basis of its
behavior. Through the performance evaluation of a
system you can know what it can offer under certain
operating conditions, in order to delimit the
application area where it can be used with success.

We will model and simulate a model for
Bluetooth characterized by 7 Slave through the use of
Petri nets, and finally we will analyze performance in
various scenarios.

Among all the indices performance, we have
decided to analyze the most interest: throughput.
It shows the transmission capacity of a channel,
which means the number of frames transmitted (token)
in unit of time.

The purpose of this work is to create a Petri
network that simulates, in its functionality, data
transfer phase in a piconet in Bluetooth protocol,
verifying the validity of performance in terms of
throughput depending on the workload obtained by
Loki simulator with actual protocol examined.

To make the various simulations, initially
we have constructed the model with Networks Petri
having 7 Slave. That, as it was demonstrated by the
tests carried out during the creation, models well
Bluetooth functionality to be analyzed in this
experience. [4]

In the model, the master is characterized by

an initial transition (lasting 625 µs), which is active in
even slots or to the start of simulation, or after
receiving a message from Slave (region A), the
token is then sent to a slave, chosen second mode
"round-robin", represented by output ring from the
master himself (region B).

A generic Slave i (i = 1, ..., 7) consists of a
generator of packages, which creates, through a
transition with deterministic distribution (delay Ti),
the tokens to be sent through an output buffer and a
counter of submitted token. When the turn of the
Slave is taken into consideration, if they are in their
token buffer, a token is transmitted, its counter will
be increased and control will be returned to the
master; however, if the buffer is empty, a transition
will be activated that will return only the control to
the master (Region C).

This situation of choice was modeled using
inhibitors arcs, which allows a transition to shoot only
if in the place of entry there are any tokens.

Finally, to simplify the structure of the model, it
was used a single transition (625 µs) from all
slaves to the master (Region D) (in this way we
haven't 14 separated transitions) to obtain a model

easier to understand.
The purpose of the simulations is to

measure the throughput (token / s) of each Slave to
change of workload (token / s)

All simulations are characterized by a
duration of 5 seconds. The times of generation of
tokens are the same for all Slave.

The tests were repeated by varying the delay
T of the transitions, in a range of approximately 1 ms
and 12 ms. This range was chosen from a situation of
low load (12 ms) to achieve with its progressive
changes, situations of saturation (1 ms).

From simulations, we obtained the following
values:

As you can see from global chart, throughput
increases in a linear way with the workload until you

 29

reach the saturation point (800 token / s), and from
that point it begins to have a constant trend.

A reliable tool for testing the complexity of
modern networks and especially the wide variety of
services offered by them is of great importance. As we can expect, charts show a trend in

which the values accurately reflect the theoretical
basis of Bluetooth, because they are based on very
specific conditions. Because you have 1600 time
slots per second, half of which are reserved for the
transmission of the master, there were 800 to be
shared to all Slave. Because we have used a
deterministic distribution for the creation of tokens
output from slaves, charts relating to each of them
are perfectly overlap.

Thanks to the simulation of networks and
related anomalies, it is possible to reproduce work
environments that are increasingly similar to the
networks in operation

REFERENCES

[1] Petri С A., General Net Theory, Proceedings of the Joint
IBM & Newcastle upon Tyne Seminar on Computer
Systems Design, 1976 J.

 [2] Peterson J. L., Petri Net Theory and the Modeling of
Systems, Prentice Hall, New Jersey, 1981 VI. CONCLUSION

 [3] Christoph Lindemann, Performance Modelling with
Deterministic and Stochostic Petri Nets, John Wiley &
Sons, Inc., 1998[4] McDermott-Wells, What is
Bluetooth?, P. Potentials, IEEE, 2004

Ultimately the development of this Petri
Networks simulator, Loki++, has allowed us to
understand the importance of simulation in the
study of Processes and networks.

 30

