VISION SYSTEM FOR AUTONOMOUS ROBOTS:
ROAD TO EUROBOT 2007

Roberto Aloi, Danilo Treffiletti

University of Catania,

Italy

roberto.aloi@email.it,

 treffiletti@urbands.net
Abstract

Vision systems are a fundamental component in the process of designing and building a robot.
In this paper we are going to discuss the techniques used to implement the vision system for a "recycling robot", built to collect bottles, cans and batteries and to separate them into different bins.
The robot, designed to participate to the International compe​tition of robotics "Eurobot 2007", is able to distinguish the objects according to their shape and color, in a way that is independent from the lighting conditions of the surrounding space.
The algorithm we propose is based on a simple idea: using the CIE L*a*b* color space to make color information of objects independent from the lighting ones.
The code we are going to treat is entirely written in С language, using the OpenCV libraries.
Sample codes will be furnished while explaining the details of the algorithm used.
Index Terms Computer, Vision, Eurobot, OpenCV, CIE L*a*b*, Color Space.
I. INTRODUCTION

One of the most troublesome issues in the process of designing and building a robot from scratch is connected with the fact that computers, today, are limited in their ability to interact with the surrounding world because of the lack of the ability to "see".
Big efforts have been made in the last decades by the scientific community to provide computers with the functions typical of the human vision.
The branch of artificial intelligence whose main purpose is to make an intelligent entity to see (read, to understand a scene or features in an image) is referred to as Computer И»оп[1][2]Р][4][5].
In other words, Computer Vision can be considered as the extreme attempt of reproducing on machines the cognitive path made by man in the process of interpretation of the real world. A concise survey on the recent advances in computer vision can be found in [6].
The component of a robot aimed at the extraction of features from a scene and their translation in high-level information is called Vision System.
In this paper we report our
 experience about the design and the implementation of the Vision System for an autonomous robot built to participate to the International competition "Eurobot 2007".
The paper is structured as follows. Section II is a brief introduction to the Eurobot World, the environment our robot is going to live in. In this section we will introduce the tasks and the goals our robot was designed to achieve (essential data for the implementation of a well designed vision system). Section III introduces some important theoretical concepts that represent the basis for the next discussions. In section IV we present the vision system in detail. Section V reports our conclusions.
II. THE EUROBOT WORLD

A. What Eurobot means
Eurobot is an international robotics contest which involves students, researchers and amateurs from all over the world. Created in 1998 with the name of "French Cup of Robotics", in 2006 the competition involved 26 Countries, represented by 350 teams.
Organized in two phases (national qualifications and the in​ternational final), the contest consists in a real "tournament" in which the competing robots are dueling in "1 vs 1 challenges" towards the final glory.
[image: image1.png]

Fig. 1. The Eurobot Robotics Contest
Every year, a different robotic game is chosen and a really refined set of playing rules is established. Of course, robots must be absolutely autonomous. Any kind of communication with the robots (both wired or wireless) during the matches is forbidden. Robots have spatial limits, in terms of perime​ter, height and so on and they must implement an obstacle avoidance system.
B. The Eurobot 2007 Edition
This year, the chosen robotic "game" was not properly a game (maybe, did the organizers finish their list of games?).
The robots of the current edition are indeed a sort of recycling robots, whose main purpose is sorting waste in a given battlefield
[image: image2.png]

Fig. 2. The Battlefield for the Eurobot 2007 Competition
There are three kinds of waste the robot have to find: bottles, cans and batteries. Each class of waste is distinguished by specific colors (red or blue for the batteries, green for the bottles, yellow for the cans). The robots have to locate the garbage spread all over the battlefield and to transport it into different bins, identified by specific colors, too, and located in some prefixed locations.
 A representation of the battlefield is given in figure 2.
As you can easily imagine, in a similar kind of world, the Vision System of the robot represents one of the most important components to perform the requested tasks.
III. THEORETICAL BASIS
In this section we are going to introduce some important theoretical concepts, needed to better understand the following sections. Of course, we are not pretending of summarize the whole theory of vision systems, color spaces and image processing techniques in the following pages. For that, please refer to the relative references.
A. Vision Systems
We have already introduced in section I the concept of Vision System as "the component of a robot aimed at the extraction of some features from a scene and their translation in some kind of high-level information".
Of course, a vision system and its internal organization are deeply application dependent. Anyway, it is possible to find some main features that are almost independent from the specific implementation and that are actually present in every CV system. In particular, it is possible to identify the following stages:
· Image acquisition;
· Pre-processing;
· Feature extraction;
· Detection/Segmentation;
· High-level processing.
In the Image acquisition stage, a digital image is produced by one or more image sensors, such as cameras. Depending on the type of the image sensor, the image data can be two or three dimensional. The value of each pixel may represent the intensity of the light in one or several spectral bands (gray or color images) or can be related to other physical measures, such as depth, absorption or reflectance of sonic or electromagnetic waves, or nuclear magnetic resonance. In the Pre-processing phase, the image grabbed during the previous stage needs to be pre-processed, in order to ensure it satisfies certain assumptions implied by the CV method adopted (such as re-sampling, noise reduction, contrast en​hancement, etc).
With the Feature extraction step, features of the image like lines, edges, blobs or points are extracted from the image data. The Detection of relevant features of the image and the Segmentation of the image itself in sub-images represent the fourth step and allow the distinction in relevant and not relevant features for the next stage.
The High-level processing is the last step of the computer vision system. The input of this step usually is a small set of data that contains the detected objects of the image. The task of this stage is to extract some high level information about the real objects (like object type, position and size) from the input image.
We will analyze in detail the above stages in the following sections, while studying the algorithm used for the vision system in our robot.

B. The CIE L*a*b* Color Space
The algorithm we propose is strictly connected with the concepts of color space, color model and human color perception [7, 8].
A lot of studies about color perception, in fact, showed that the human eye has some photo receptors to catch short (or S), middle (or M) and Long (or L) waves, better known as blue, green and red photo receptors (the notorious RGB). In other words, the color sensation of man is given by an appropriate use of these three parameters. These concepts have been translated for the first time in a more formal way by the International Commission on Illumination (or CIE) in 1931, with the mathematical definition of the first color space: the CIE XYZ color space[9]. One of the variants of the CIE XYZ color space is represented by the so called CIELAB (to be more precise, the CIE L*a*b*) color space, actually considered the most complete color model for the description of the full set of colors visible to the human eye.
Let's try, now, to better understand the structure of this color space and the reasons that moved us to adopt this color space in our vision system.
Unlike the "standard" (and probably better known) RGB color space, in the CIELAB the three parameters represent:
· lightness (L*);
· position between magenta and green (a*);
· position between yellow and blue (b*).
Going into details, lightness ranges between 0 and 100 (L*=0 yields black, L*=100 indicates white). Negative values for the a* parameter represent a movement along the magenta-green axis towards the green, while positive values for a* indicate a movement towards the red along the same axis. At the same way, negative values for the b* parameter represent a movement along the yellow-blue axis towards the blue, while positive values for a* indicate a movement towards the yellow along the same axis. For more clarity, please refer to figures 3 and 4, in which the graphs relative to the LAB color space for two different values of lightness have been reported.
[image: image3.png]

Fig. 3. LAB color space for a 25% lightness
[image: image4.png]

Fig. 4. LAB color space for a 50% lightness
Unlike the other color spaces, like the RGB or the CMYK ones, the CIE L*a*b* color space is an absolute color space. It has been developed to serve as a device independent model to be used as a reference for the other color spaces. Notice that the LAB model is a three dimensional model and it can only be properly represented in a three dimensional space. Of course, converting images from a color space to an other one provokes the raising of some error. However, according to the results of the tests performed by Dan Margulis [10], the loss can be considered completely negligible. But why we're going to use such a color space in our algorithm?
The answer to this question is embedded into the nature of the LAB model itself. To better understand this concept, let's have a look to figure 5.
[image: image5.png]

Fig. 5. How many colors can you distinguish in the picture?

If someone would ask you how many colors are present within the previous image, in a way that is almost independent from the lighting information, it should be easy for you to say that there are essentially three colors present: pink, blue and white. The CIE L*a*b* color space essentially has this capability. It can separate the color information from the lighting information, reducing the color parameters from three (R, G and B) to two (a* and b*). Not that bad!
The reason that moved us towards the adoption of this color space in our project are related to the Eurobot 2006 experience [11]. In the previous edition of the competition, in fact, the designed vision system based is color analysis simply on the analysis of the R, G and В channels. The system worked correctly, but it was necessary to set the correct thresholds for the analysis operation for different conditions of lightning. With the new approach we totally overcome the problem.

C. The OpenCV Libraries
OpenCV is a set of open source computer vision libraries originally developed by Intel
. The libraries are cross-platform and mainly aimed at real-time image processing. They showed great results in a very huge amount of application areas, ranging from the Human-Computer Interface field to the robotics one, passing through the areas of the biometrics and of the information security. For all of these reasons we decided to use the set of OpenCV libraries in our application. We will comment in section IV the specific OpenCV functions used, while discussing the proposed algorithm.

IV. THE PROPOSED ALGORITHM

In this section we show the algorithm used to implement the vision system in our robot. The algorithm is entirely written in С language, using the OpenCV libraries. We will furnish some simplified code fragments to better understand the exposed concepts. We decided to structure this section in five subsections, corresponding to the stages we identified in section III, while speaking about the generic vision system.

A. Image acquisition
The Image acquisition phase is devoted to the grabbing process of digital images from the camera. We initially used an OpenGL Eurobot Simulator
 we wrote in Java to generate the needed frames. Then we moved to a real 160 x 120 pixels resolution camera (the one that is actually embedded in the robot).
[image: image6.png]

Fig. 6. Our OpenGL Eurobot Simulator
[image: image7.png]

Fig. 7. The first prototype to test the vision system
The Image acquisition phase is made up two steps: an initialization and the real grabbing stage. The initialization is performed just once when the system starts. During initial​ization we set the frame size and rate and other important parameters needed by the OpenCV framework. Then we periodically grab some frames from the camera. Each frame, dealt as a "snapshot" of the external world, is saved into the main memory of the embedded system for further elaborations.
To interact with the camera we used some of the functions from the setpwc tool that employ the well known ioctl system calls. The acquisition of the image in the OpenCV framework is initialized through the cvCaptureFromCAM () function from the libraries. The code used to set the frame size and rate is reported below.
After the initialization phase, the camera is ready to acquire images. Then, two simple OpenCV functions are used for the real image acquisition: the cvGrabFrame () and the cvRetrieveFrame () functions. The former takes a picture from the camera and saves it into the main memory , while the latter simply returns a pointer to the memory area that contains the image. An example of an acquired image is shown in figure 8.

[image: image8.png]E Y T ——
Ant f4, int v, int h, int franerate) {
Struct viden window vein

/¢ get rasolution/framerate -/
4 (ioct1(rd, vitocewTN, avein)

Y

s om0 |
ein wideh = i
wwin height = b

)

1f (wwin flags & EWC_prs_PRASK) {
/- set naw Framerate 7
‘nwin. Flags & ~BHC_pps pRUASK;
win flags |- (FraperafecceHC_ RS _SHIPT);

16 (iostl(rd, vipocswin, wwin
error_exit (rvipIocswIi)
) etse |
Eprinte(stderr, This device dossn't
support setting the framerate.\n");
exit 1)

The set_dimensions_and_framerate function

[image: image9.png]

Fig. 8. An example shot taken with the embedded camera
B. Pre-processing
In this step, our system essentially converts the RGB composite image captured from the camera into a new LAB composite image. The camera present in our vision system adopts, like most of the other cameras, displays, printers and scanners, the absolute color space sRGB. The conversion from sRGB to CIE L*a*b* is performed in two steps:
· from sRGB to CIE XYZ;
· from CIE XYZ to CIE L*a*b*.
Notice that, in the first conversion, the intensity of each sRGB channel has to be expressed with a floating point value, in a range between 0 and 1. The value of the intensity in the CIE XYZ channels are evaluated with the following formula:
[image: image10.png]X 041245 0.35758 018042)
Y | =] 021267 071516 0.07 (G
z 0.01933 0.11919 005023 1(B)

where the function f (K) is defined as follows:
[image: image11.png]for

K < 0.04045

K > 0.04045

The f(K) function is needed to approximate the non linear behavior of the gamma value in the sRGB color space. The value we used for γ in the above formula is γ = 2.2 and represents the average value for a real display.
In the second conversion, the components of the reference white point are defined as: Xn = 0.950456, Yn = 1.0 and Zn = 1.088754. The values for the intensities in the CIE L*a*b* color space are calculated with the following formulas:
[image: image12.png]L*=116-g(Y/Y,) - 16
=500 [g (X/Xa) — g (V/Ya)]
b =200 [g (Y/Ya) - 9(Z/Z4)]

where the function g (t) is defined in the following way, to prevent an infinite slope at t = 0:
[image: image13.png]+ > 0.008856
g(t) for

787t + 15 t < 0.008856

The whole transformation from sRGB to CIELAB is achieved through the OpenCV cvCvtColor () function. The three parameters of this function represent, in order: the source image, the destination image and a selector for the conversion to be applied. The last parameter is set to the CV_BGR2Lab OpenCV constant value. The cvCvtPixToPlane () func​tion is used to extract three gray scaled images from the converted image. These images represent the intensity values for channels L*, a* and b*. An example of the three extracted images is shown in figure 9.
C. Feature extraction
Within this stage we identify the sections of the image that contain the target colors. This is achieved through the definition of some thresholds applied to the L* a* and b* planes obtained in the previous stage. We apply the procedure listed below to each pixel of the original image, creating a new binary image for each color we are looking for. The procedure results in a binary image, in which each pixel is white if consistent with the selected thresholds, black otherwise.
The showed code fragment represents only the main struc​ture of the procedure. We actually use an optimized version of that procedure to perform the feature extraction. With refer​ence to the code, the img object represents the captured image; the cie_plane_L, cie_plane_a and cie_plane_b objects are the three color planes of the image in the CIE L*a*b* color space; the yellow, green, blue, red and white objects are initially empty images, filled "step by step" during the execution of the algorithm. The properties of each color object can be summarized as follows:
Yellow has a low intensity value on the a* plane and an high intensity on the b* plane. The value of the L* parameter is not significant.
Green has a low intensity value on the a* plane and an high intensity on the b* plane, but threshold values are different from the yellow ones. The value of the intensity on the L* plane is not significant.
Blue has a low intensity value on both the a* and b* planes. The value of the L* parameter is not sig​nificant.
Red has an high intensity value on both the a* and b* planes. The value of the L* parameter is not significant.
White has a mean intensity value on both the a* and b* planes. The value of the intensity on the L* plane is high.
[image: image14.png]for (% - 07 x < ingwidth; xie) {

for 1y = o y < ing-sheights yas) (
uine yellow value;
uint green valus;
uint blus valua;
uint red value;
uint whife value;
uint cler_valua;
uint clea valua;
uint cieb valua;

ciel, valus = (uint) cvietrealzdicie plane L, y, X1:
Giesvalus - (uint) cvietiealapicis plane s, v, %1
cicbvalus - (uint) cvietrealzbicie plan b, v, x1;

16(ciea_value « yollow thrashold a i
cisb_value » yallow thrashold b) (
yeTlow value = 255;
} etse |
yallow_value = o
}

cvsstrealan(yellow, y, x, yellow valus);

1£(ciea_value « green threshold a s
cisb_value > green threshold b} {
green_value - 255;
} etse |
green_value = 0;
}

cvsetrealan(green, y, x, green_value);

1£(ciea_value < blue thrashold a &
cib valus < blue threshold b {
bl valus = 255
} etse |
blus_value = o7
}

cvsstrealzn(blus, y, x, blus value);

160 ciea_value » red_threshold a s
cisb_value > red thrashold b} {
red value = 255,
} etse [
red_value = 0;
}

cvsstrealan(red, y, x, red_value) ;

160 (val_ciea » white_threshold_min 4&
val_ciea « white_thrashold nax) & (
VAl cich - white threshold min i
valcieh < white threshold max) &&
valcier > white thrashold L |

white_value = 755;

} oetes |

white_value = 0;
}

cvsetnealan(white, y, x, white_value;

Code fragment for the creation of the binary images
In figure 10, we report an example of the three binary images, representing the Green, Blue and Red colors of the original composite image according to our thresholds. Notice that the thresholds, in the robot, are saved in a .dat files, accessible from both the vision system (written in С language) and the rest of the software running on the embedded (totally written in Erlang language (http://www.erlang.org/).

D. Detection/Segmentation
This step is related to the detection of the connected components, present in the binary images we created in the previous step and to the selection of the connected compo​nents characterized by a "suitable" size for the system. The following formulas:

[image: image15.png]Kmass = 322 and Yinass = 2

To apply the CAM Shift algorithm, our system applies a mask on the binary images to select only one object per image, pass​ing the masked binary image to the OpenCV cvCamShi f t () function, together with the bounding box of the connected component and the needed exit criteria. The bounding box is evaluated through the cvContourBoundingRect () func​tion, while the moments are found with the cvMoments () function. The size of the objects is retrieved from the area (calculated in the previous step), while the size of the track box is evaluated through the CAM Shift algorithm.
[image: image16.png]

Fig. 11. The detected objects in the scene

In figure 11 we can see the detected objects. The red, blue and green borders represent the edges of the corresponding detected objects (refer to figure 8 for an easy comparison). The colored points are the centers of mass of the relative objects. The bounding boxes for each connected component are marked in grey. The magenta boxes represent the estimated orientation of the objects.
[image: image17.png]

Fig. 9. The L*, a* and b* planes

[image: image18.png]

Fig. 10. The Green, the Blue and the Red binary images

The final output of this stage is represented by the information contained in the following table:

[image: image19.png]“Type of object | Area | Angle | X v
Torle T308 [1068 Tn [GRZom
Bluc Battery | 346 | 7207 | 73 cm [424cm
Red Battery | 314 [884" | 53 om | 587 em

These data are passed to the embedded system (the real core of the robot) that will take the proper decisions about the strategy to be applied to achieve the requested tasks (i.e. moving towards a specific object, opening or closing the pliers, activating the brushes).
V. CONCLUSIONS
It should be clear that there is not an absolute "optimum " vision system. A Vision System can be valued only within its context. In these terms, we can label a Vision System as "good" if it allows the robot to perform the task it was designed to. In a simplified world as the Eurobot one, we can successfully use an "easy" algorithm as the proposed one because of the assumptions we can do about the external world. If we are moving in a totally different context, we will probably need some "refined" methods.
One of the most delicate issues in the process of designing a vision system for a robot is related to the careful evaluation of the trade off between needs, costs and time. The tests we performed on the vision system of our robot showed great results (as you can notice from the screen-shots contained in this paper), but we need to wait the starting of the final competition of the Eurobot 2007 contest for the definitive proof.
REFERENCES

[1] D.H. Ballard and CM. Brown, Computer Vision. Prentice-Hall, 1982.

[2] H. Barlow, С Blakemore and M Weston-Smith (Eds), Images and Understanding. Cambridge University Press, 1990.

[3] A. Basu and X. Li, Computer Vision: Systems, Theory and Applications. World Scientific, 1993.

[4] M. Brady and H.G. Barrow, Computer Vision. North-Holland, 1981.

[5] A. Low, Introductory Computer Vision and Image Processing. McGraw Hill, 1991.

[6] M. Picardi and T. Jan, Recent advances in computer vision. The Industrial Physicist.

[7] M. D. Fairchild, Color Appearance Models. Addison-Wesley, Reading, MA, 1998.

[8] G. Sharma, H.J. Trussell, Digital Color Imaging. IEEE Transactions on Image Processing, Vol. 6, No. 7, July 1997.

[9] C1E, Commission Internationale de I Eclairage Proceedings. Cambridge University Press, 1931.
[10] D. Margulis, Photoshop Lab Color: The Canyon Conundrum and Other Adventures in the Most Powerful Colorspace, Peachpit Press, 2005.
[11] V. Nicosia, C. Spampinato and C. Santoro for the Eurobot Dill' Team, Software Agents for Autonomous Robots: the Eurobot 2006 Experience. CEUR Workshop Proceedings ISSN 1613-0073, Vol. 204, 2006.

� Our stays for the DI1T Team of the University of Catania. More info at: http://eurobot.diit.unict.it.

� More details about the Eurobot contest and its 2007 edition can be fotmd at the contest home page: http://www.eurobot.org.

� More info at: http://sourceforge.net/projects/opencvlibrary/.

� http://prof3 ta.netsons.org

PAGE
32

