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Введение 

 

Актуальность темы исследования. Радиоэлектронные системы 

играют важную роль во многих отраслях хозяйства Российской Федерации и 

мира. Повышение надежности и долговечности изделий радиоэлектроники 

требует внедрения эффективных методов неразрушающего контроля и 

технической диагностики печатных узлов, от которых во многом зависит 

работоспособность названных выше изделий. О необходимость внедрения 

современных автоматизированных систем контроля и диагностики говорят 

государственные указы и стратегии, связанные с Индустрией 4.0 в России: 

стратегия развития электронной промышленности Российской Федерации на 

период до 2030 года говорит о необходимости внедрения в производство 

автоматизированных систем контроля. Использующиеся в настоящее время 

методы не позволяют в полной мере автоматизировать процессы контроля и 

диагностики. В частности, метод оптического контроля не позволяет выявлять 

скрытые дефекты печатных узлов, а метод рентгеновской инспекции является 

сложным, дорогостоящим и опасным для здоровья персонала. Трудности 

автоматизации и вызванная этим необходимость использования ручного труда 

порождает проблему недостатка контролеров и/или их неполного 

соответствие профессиональным компетенциям. 

Возникает противоречие: применяемые методы контроля, такие как 

рентгенография, ультразвуковая дефектоскопия и оптическая микроскопия, 

обладают рядом ограничений, включая сложность интерпретации результатов, 

высокую стоимость оборудования или необходимость прямого доступа к 

исследуемым узлам, что также усложняет их автоматизацию. Наиболее 

подходящим для автоматизации процессов контроля и диагностики является 

тепловизионный метод неразрушающего контроля, благодаря бесконтактному 

способу измерений, высокой скорости диагностики, возможности выявления 

скрытых дефектов, связанных с локальными перегревами или нарушением 

тепловых режимов. 
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Задача автоматизированного контроля и диагностики тепловизионным 

методом решается внедрением программно-аппаратного комплекса 

диагностирования с обеспечением возможности анализа данных с помощью 

искусственных нейронных сетей и реализации других современных 

технологий цифровизации. Реализованный программно-аппаратный комплекс 

позволит снизить влияние человеческого фактора и связанных с ним ошибок 

при контроле печатных узлов, а также позволит увеличить их 

эксплуатационный ресурс за счет более точного выявления дефектов.  

Использующиеся в настоящее время методы тепловизионного контроля и 

диагностики печатных узлов не позволяют соответствовать современным 

требованиям, предъявляемым к качеству радиоэлектронных систем, а именно, 

обеспечению высокой точности контроля и снижению трудоемкости его 

проведения. В связи с вышеперечисленным возникает научно-техническая 

задача, связанная с разработкой и внедрением программно-аппаратного 

комплекса, реализующего тепловизионный метод неразрушающего контроля 

и алгоритмов обработки данных термограмм печатных узлов с обеспечением 

возможности его цифровой интеграции в информационную инфраструктуру 

отечественных предприятий радиоэлектронной промышленности. 

Степень разработанности проблемы.  

Развитие тепловизионного метода неразрушающего контроля в России 

берет начало в 1970-х года. Особо важные результаты в данной области 

описаны в публикациях: Д.А. Рапопорта, В.П. Вавилова, В.В. Ширяева и др. 

На сегодняшний день  научные исследования в области тепловизионного 

неразрушающего контроля  в нашей стране проводят: О.Н. Будадин  (ЦНИИ 

СМ, г. Хотьково), С.А. Смотрова и  А.В. Смотров (ЦАГИ им. Е.В. Жуковского, 

г. Жуковский), В.П. Вавилов и А.О. Чулков (НИ ТПУ, г. Томск), В.Н. 

Чернышов  (ТГТУ, г. Тамбов), С.У. Увайсов (МИРЭА, г. Москва), М.И. 

Щербаков (ИРТИС, г. Москва), Е.В. Абрамова (МГТУ им. Н.Э.  Баумана, г. 

Москва), А.В. Лукьянов (ИрГУПС, г. Иркутск) и др. 
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В зарубежных исследования применение тепловизионного метода 

неразрушающего контроля изделий и материалов описано в работах: S.  Sfarra 

(Университет Аквилы, Италия), J.-C. Batsale (Университет Бордо, Франция), 

B. Oswald-Tranta (Университет Леобен, Австрия), C. Maierhofer (Институт 

исследования материалов, Германия), X. Maldague (Университет Лаваля, 

Канада), J. Morikawa (Токийский институт технологий, Япония). 

Цель работы: совершенствование процессов проведения диагностики 

печатных узлов, за счет внедрения алгоритмов обработки данных на базе 

тепловизионного метода неразрушающего контроля. 

Объект исследования: процесс контроля и диагностики печатных 

узлов для отечественных предприятий, отвечающим требованиям индустрии 

4.0. 

Предмет исследования: автоматизированный метод неразрушающего 

тепловизионного контроля и диагностики печатных узлов. 

Для достижения цели диссертационного исследования в работе 

поставлены и решены следующие задачи:  

1. Разработка программно-аппаратного комплекса, реализующего 

тепловизионный метод автоматизированного контроля печатных узлов; 

2. Разработка математической модели процесса обработки термограмм 

для осуществления автоматизированной классификации дефектов 

компонентов при тепловизионном контроле печатных узлов; 

3. Разработка алгоритма оценки влияния перегрева компонентов, на 

скорость деградации их параметров, способствующий повышению 

надежности печатных узлов. 

Методы исследований: элементы математического, статистического 

методов обработки данных, построения искусственных нейронных сетей, 

имитационное моделирование. 

Программные средства реализации диссертационного исследования: 

Microsoft Office, Python, MySQL. 
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Область исследования: соответствует пп 1, 4, 6 паспорта 

специальности: 2.2.8 – «Методы и приборы контроля и диагностики 

материалов, изделий, веществ и природной среды»  

Основные положения, выносимые на защиту:  

1. Программно-аппаратный комплекс контроля и диагностики 

печатных узлов, реализующий тепловизионный метод неразрушающего 

контроля, повышающий эксплуатационный ресурс изделий радиоэлектроники 

за счет внедрения нейросетевой модели распознавания дефектов. 

2. Математическая модель обработки термограмм при 

тепловизионном контроле печатных узлов, обеспечивающая автоматизацию 

процесса выявления скрытых дефектов печатного узла.  

3. Алгоритм оценки влияния перегрева компонентов печатного узла 

на показатель надежности, на основании данных полученных при 

тепловизионном контроле.  

Научная новизна: 

1. Программно-аппаратный комплекс реализующий 

тепловизионный метод неразрушающего контроля, отличается от известных 

тем, что обработка полученных термограмм осуществляется искусственной 

нейронной сетью, что позволяет повысить оперативность проведения 

контроля и диагностики печатных узлов.  

2. Математическая модель обработки термограммы с помощью 

искусственной нейронной сети отличается от известных тем, что основана 

на упрощенной обработке численных данных, полученных при 

тепловизионном контроле, что позволяет повысить оперативность выявления 

дефектов печатного узла.  

3.  Алгоритм оценки влияния перегрева компонентов отличается от 

известных тем, что учитывает отличия температуры компонентов от 

эталонных значений и позволяет оценить изменение надежности печатного 

узла.  
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Практическая значимость: 

1. Программно-аппаратный комплекс, обеспечивающий повышение 

оперативности проведения контроля и диагностики печатных узлов до 20%, в 

сравнении с ручным методом. 

2. Математическая модель обработки термограмм позволяет 

автоматизировать процесс тепловизионного контроля и сократить количество 

ошибок диагностирования, связанных с влиянием человеческого фактора на 

15%, а также увеличить оперативность проведения контроля и диагностики до 

40%. 

3. Алгоритм оценки влияния перегрева компонентов позволяющий 

повысить точность оценки надежности печатного узла на 5-7 % за счет оценки 

влияния реальных температур компонентов. 

Теоретическая значимость 

Программно-аппаратный комплекс позволяющий выявлять скрытые 

дефекты компонентов печатных узлов. Математическая модель позволяющая 

повысить оперативность процесса контроля и диагностики печатных узлов за 

счет автоматизации распознавания дефектов компонентов. Алгоритм оценки 

влияния перегревов компонентов позволяющий повысить точность расчета 

надежности печатного узла. 

Степень достоверности результатов диссертационной работы 

обеспечивается корректностью применяемого математического аппарата, 

анализа данных с использованием федеральных нормативно-правовых и 

нормативно-технических документов подтверждается результатами 

практической апробации. 

Личный вклад автора заключается в непосредственной разработке 

основных положений, выносимых на защиту. 

Реализация работы. Результаты диссертационного исследования 

внедрены в деятельность ООО «Бергмаш», ООО «Нью-Лайн», что 

подтверждено соответствующими актами. Результаты диссертационного 

исследования использованы в учебном процессе ФГАОУ ВО «ГУАП» по 
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дисциплинам «Взаимозаменяемость и нормирование точности», 

«Метрология», «Организация и технология испытаний», «Метрологическое 

обеспечение жизненного цикла продукции». 

Апробация работы 

Основные результаты исследования докладывались и обсуждались на VI 

международном форуме «Метрологическое обеспечение инновационных 

технологий» 2024, 2025г; Международном форуме «Математические методы 

и модели в высокотехнологичном производстве» 2024, 2025 г. 

 По результатам диссертационного исследования опубликовано 25 

научных работ, в том числе: 6 работ в рецензируемых научных изданиях ВАК, 

из них 4 без соавторов, 17 работ в других изданиях, получено 2 свидетельства 

о государственной регистрации программы для ЭВМ. 

Структура и объем диссертации: диссертация состоит из введения, трех 

глав, заключения, списка литературы, и приложений. Содержание работы 

изложено на 139 стр. (8,7 п.л.) машинописного текста, включая 41 рисунок и 

11 таблиц. 
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Глава 1 Исследование и анализ методов и средств контроля  

и диагностики изделий радиоэлектроники 

1.1 Надежность изделий радиоэлектроники 

Согласно [1] надежность – свойство объекта выполнять требуемые 

функции, сохраняя во времени значения установленных эксплуатационных 

показателей в заданных пределах, соответствующих заданным режимам и 

условиям использования, технического обслуживания, ремонтов, хранения и 

транспортирования. Надежность изделий радиоэлектроники складывается из 

основных показателей надежности (рис. 1).

 

Рисунок 1 – Показатели надежности изделий  

 

Основные показатели надежности: 

Безотказность – свойство объекта непрерывно сохранять 

работоспособность в течение некоторого времени или некоторой наработки. 

Безотказность характеризуется техническим состоянием объекта: 

исправностью, неисправностью работоспособностью, неработоспособностью, 

дефектом, повреждением и отказом. Каждое из этих состояний 
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характеризуется совокупностью значений параметров, описывающих 

состояние объекта, и качественных признаков.  

Исправное состояние – состояние объекта, в котором все параметры 

объекта соответствуют всем требованиям, установленным в документации на 

этот объект.  

Неисправное состояние (неисправность) – состояние объекта, в котором 

хотя бы один параметр объекта не соответствует хотя бы одному из 

требований, установленных в документации на этот объект. 

Долговечность – свойство объекта сохранять работоспособность до 

наступления предельного состояния при установленной системе технического 

обслуживания и ремонтов. Предельное состояние объекта характеризуется 

таким состоянием, при котором дальнейшее его применение по назначению 

недопустимо или нецелесообразно, либо восстановление исправного или 

работоспособного состояний невозможно или нецелесообразно. Критерием 

предельного состояния служит признак или совокупность признаков 

предельного состояния объекта, установленных в нормативно-технической и 

конструкторской документации. Объект может перейти в предельное 

состояние, оставаясь работоспособным, если его дальнейшее применение по 

назначению станет недопустимым по требованиям безопасности, 

экономичности или эффективности. Переход объекта в предельное состояние 

влечет за собой временное или окончательное прекращение его эксплуатации. 

Для неремонтируемых объектов имеет место предельное состояние двух 

видов. Первый совпадает с неработоспособным состоянием. 

Ремонтопригодность – свойство объекта, заключающееся в 

приспособленности к поддержанию и восстановлению работоспособного 

состояния путем технического обслуживания и ремонта. Свойство 

ремонтопригодности полностью определяется его конструкцией, т.е. 

предусматривается и обеспечивается при разработке, изготовлении и монтаже 

объектов, с учетом будущего целесообразного уровня их восстановления, 

который определяется соотношением ремонтопригодности и внешних 
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условий для выполнения ремонта, в том числе устанавливаемых для этого 

пределов соответствующих затрат. 

Восстанавливаемость – свойство объекта, заключающееся в его 

способности восстанавливаться после отказа без ремонта. 

Сохраняемость – свойство объекта сохранять значения показателей 

безотказности, долговечности и ремонтопригодности в течение и после 

хранения и транспортирования [1]. 

Готовность – свойство объекта, заключающееся в его способности 

находиться в состоянии, в котором он может выполнять требуемые функции в 

заданных режимах и условиях применения, технического обслуживания и 

ремонта в предположении, что все необходимые внешние ресурсы обеспечены 

По характеру изменения параметров до момента возникновения: 

Внезапный отказ – отказ, характеризующийся скачкообразным 

изменением значений одного или нескольких заданных параметров объекта. 

Постепенный отказ – отказ, возникающий в результате постепенного 

изменения значений одного или нескольких заданных параметров объекта. 

Независимый отказ – отказ, не обусловленный другими отказами. 

Зависимый отказ – отказ, обусловленный другими отказами. 

По причине возникновения: 

Конструкционный отказ – отказ, возникший по причине, связанной с 

несовершенством или нарушением установленных правил и норм 

проектирования и конструирования 

Производственный отказ – отказ, возникший по причине, связанной с 

несовершенством или нарушением установленного процесса изготовления 

или ремонта, выполняемого на ремонтном предприятии 

Эксплуатационный отказ – отказ, возникший по причине, связанной с 

нарушением установленных правил или условий эксплуатации. 

Факторы, влияющие на надежность радиоэлектронных изделий, делятся 

на три основные группы: схемно-конструктивные (недостатки схем и 

конструкции, применение некачественных материалов), эксплуатационные 
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(условия эксплуатации, например, климат и механические нагрузки, а также 

человеческий фактор, включая правильность монтажа и обслуживания) и 

производственно-технологические (качество компонентов, соблюдение 

технологических процессов сборки и испытаний).  

Надежность системы основана на статистической независимости 

отказов её компонентов и их последовательном соединении, при котором 

выход из строя одного компонента влечёт отказ всей системы (рис. 2).  

 

Рисунок 2 – Схема соединения элементов в печатном узле с точки зрения 

надежности 

 

 

При расчёте надёжности печатных узлов радиоэлектронной аппаратуры 

без резервирования используется последовательная схема замещения. В её 

рамках отказ любого компонента считается отказом всего узла. В этом случае 

вероятность отказа печатного узла: 

1 2 ...S NA A A A=    =  . (1) 

Вероятности событий Ai и AS совпадают с определением вероятности 

безотказной работы i-го элемента системы, поэтому вероятность выражается 

через вероятность безотказной работы Pi: 

1 2 ...S NA A A A=    =  . (2) 

 Pr , 1...i iP A i N= = . (3) 

Так как события Аi статистически независимы, вероятность безотказной 

работы Pi как: 

           1 2 1 2

1

Pr Pr ... Pr *Pr ...Pr Pr
N

S N N i

i

A A A A A A A A
=

=    = = . 
(4) 

Таким образом, отказ любого элемента при последовательной схеме 

замещения приводит к отказу всей системы, а её общая надёжность является 

произведением надёжностей элементов. Это обусловливает повышенные 

элемент 1 

с надежностью Р1 

 

элемент 2 

с надежностью Р
2
 

  

элемент N 

с надежностью Р
N
 

  

Вероятность события А1 Вероятность события А
2
 Вероятность события А

N
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требования к качеству изготовления и полноте диагностики печатных узлов 

[2]. 

 

1.2 Анализ современных методов контроля и диагностики печатных 

узлов 

Техническая диагностика – область знаний, охватывающая теорию, 

методы и средства определения технического состояния объектов. В качестве 

объекта диагностирования может служить изделие и/или его составные части, 

подлежащие (подвергаемые) диагностированию (контролю). В данной работе 

в качестве объекта диагностирования и контроля рассматривается печатный 

узел импульсного источника питания из-за его широкого применения в 

радиоэлектронной промышленности. 

Печатный узел – печатная плата с подсоединенными к ней в 

соответствии с чертежом электрическими и механическими элементами и/или 

другими печатными платами [4]. Примеры печатных узлов приведены на рис. 

3. 

   

   

   

Рисунок 3 – Примеры печатных узлов  
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Требования к печатным узлам содержатся в стандарте ГОСТ Р МЭК 

61191-1–2017 «Печатные узлы. Поверхностный монтаж и связанные с ним 

технологии. Общие технические требования» [4]. 

Для диагностирования печатных узлов применяются неразрушающие 

методы контроля, описанные в ГОСТ Р 56542-2019 «Контроль 

неразрушающий. Классификация видов и методов» [5].  Для повышения 

качества контроля и диагностики изделий радиоэлектроники используются 

автоматизированные или полуавтоматизированные методы обнаружения 

дефектов, на основе существующих ручных [6–7]. 

Метод автоматической оптической инспекции (АОИ) – это метод 

контроля качества в производстве, который использует автоматизированные 

системы с камерами для выявления дефектов на печатных узлах. Он позволяет 

обнаружить такие дефекты, как отсутствие компонентов, плохая пайка, 

короткие замыкания, смещения компонентов и другие. В отличие от ручного 

контроля, АОИ обеспечивает высокую скорость и точность контроля, а также 

снижает вероятность человеческих ошибок [8–9].  АОИ-системы используют 

камеры для захвата изображений печатных узлов, а затем анализируют эти 

изображения с помощью программного обеспечения для выявления дефектов.  

Автоматическая рентгеновская инспекция (АРИ) – это технология, 

используемая для проверки печатных узлов с помощью рентгеновских 

лучей. Она позволяет обнаруживать дефекты, невидимые при визуальном 

осмотре, такие как скрытые дефекты пайки, трещины, пустоты и другие 

дефекты, которые могут повлиять на надежность и работу электронных 

устройств. Рентгеновские лучи направляются на печатный узел, а затем 

регистрируются детектором. Различные материалы и дефекты по-разному 

поглощают рентгеновские лучи, что позволяет создать изображение 

внутренней структуры печатного узла. Специальное программное 

обеспечение анализирует изображения, автоматически выявляя дефекты. АРИ 

позволяет проверять печатные узлы без их повреждения [10]. 
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Автоматизированная лазерная дефектоскопия (АЛД) – метод 

неразрушающего контроля, использующий лазерный луч для обнаружения 

дефектов в материалах и изделиях. Он особенно полезен контроля сложных по 

форме элементов и труднодоступных участков.  Лазерный дефектоскоп 

генерирует лазерный луч, который направляется на исследуемую 

поверхность. Изменения в отраженном или рассеянном лазерном излучении, 

вызванные наличием дефектов, регистрируются чувствительными 

детекторами, такими как фотодиоды. Анализ этих изменений позволяет 

определить наличие, размер и местоположение дефектов.  

Автоматизированная акустическая инспекция (ААИ) – метод 

неразрушающего контроля, который использует акустические волны для 

выявления дефектов и аномалий в различных материалах и конструкциях. Он 

основан на анализе акустических волн, возникающих при деформации или 

разрушении материала, и позволяет определять местоположение, размер и тип 

дефектов.  Датчики улавливают акустические волны, возникающие в 

результате дефектов или изменений в материале. Анализ сигналов 

осуществляется с помощью специального программного обеспечения. 

Результат сравнительного анализа основных методов диагностики и их 

применимость при использовании на печатных узлах [11] приведены в таблице 

1. 

Таблица 1 – Результат сравнительного анализа основных методов диагностики 

Метод контроля Преимущества 

метода 

Недостатки 

метода 

Применимость при 

диагностике 

печатных узлов 

Визуальный 

контроль 
Простота, низкая 

стоимость 

Субъективность, 

ограниченность 

Поверхностные 

дефекты 

Автоматическая 

оптическая 

инспекция 

Высокая скорость, 

объективность 

Ограниченность 

для электрических 

дефектов 

Внешние дефекты 

Рентгеновский 

контроль 

Выявление 

внутренних 

дефектов 

Высокая 

стоимость, 

сложность 

эксплуатации 

Внутренние дефекты 
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Продолжение таблицы 1  

Электрические 

методы 

Высокая точность 

для электрических 

дефектов 

Требует 

подключения к 

тестовым точкам 

Электрические 

дефекты 

Тепловизионный 

контроль 

Бесконтактный, 

скорость, 

выявление 

перегревов 

Зависимость от 

квалификации 

оператора 

Термические 

аномалии 

 

Метод тепловизионного контроля является эффективным методом 

диагностики печатных узлов. Как и рентгеновский метод, позволяет 

обнаруживать несоответствия схеме монтажа или сборки печатного узла, 

однако, он проще и дешевле в применении [12-13].  Тепловизионный метод 

неразрушающего контроля и диагностики основан на регистрации и 

преобразовании инфракрасного излучения объекта в видимый 

тепловизионный образ. Метод позволяет визуализировать тепловое поле 

объекта, выявляя неоднородности, «горячие» или «холодные» точки, которые 

могут указывать на дефекты компонентов [14–16]. Основным источником 

информации при тепловизионном контроле является термограмма 

исследуемого объекта (рис. 4).  

  

Рисунок 4 – Примеры термограмм печатных узлов 

 

Термограмма – тепловое изображение объекта контроля или его 

отдельного участка, по ней можно определить неправильное расположение 

компонентов, отсутствие компонентов, обрыв контактов, неаутентичные 
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компоненты, несоблюдение режимов работы компонентов печатного узла 

[17].  

Результаты сравнения существующих видов методов тепловизионного 

контроля и их применимость в области контроля и диагностики печатных 

узлов представлены в таблице 2. 

Таблица 2 – Результаты сравнения существующих видов методов 

тепловизионного контроля 

Метод 

тепловизионного 

контроля 

Преимущества метода Недостатки метода Применимость 

при 

диагностике 

печатных узлов 

Пассивный Высокая скорость, 

простая реализация 

Не выявляет внутренние 

дефекты, сильная 

зависимость от внешних 

условий 

Поиск горячих 

точек 

Модулированная 

термография 

Меньшая 

чувствительность к 

неравномерности 

нагрева, 

помехозащищенность 

Сложность внедрения, 

высокая стоимость, 

сложность 

математической 

обработки результатов 

Контроль 

многослойных 

структур, 

дефектоскопия 

металлов 

Импульсный Высокая скорость, 

чувствительность к 

дефектам поверхности 

материалов 

Неравномерность нагрева 

маскирует дефекты, 

необходимость мощного 

источника тепла 

Поиск 

расслоений, 

полостей 

 

В существующих методах тепловизионного контроля предусмотрена 

только автоматическая регистрация полученных данных, но сам процесс 

диагностики печатных узлов не автоматизирован. Из-за отсутствия средств 

автоматизированной диагностики остро встает проблема ручного труда и 

отсутствия квалифицированных контролеров [18]. 

Различают следующие виды монтажа печатных узлов: автоматический, 

ручной, сочетание автоматического и ручного монтажа. Выбор вида монтажа 

во многом определяется техническими возможностями предприятия.  

Использование технологии автоматического монтажа позволяет 

предотвращать, либо заблаговременно выявлять ряд дефектов. Так, несмотря 

на то, что при пайке в автоматической печи возможно возникновение ряда 
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специфических для данного вида монтажа дефектов: дефект типа 

«замыкание», «холодная пайка», «надгробный камень» и т.п. (рис. 5), наличие 

на выходе линии системы АОИ позволяет с вероятностью близкой к 100% их 

обнаружить [19–20] (рис. 6). 

«надгробный камень» перемычки шарики припоя 

   

Рисунок 5 – Дефекты пайки 

  

Рисунок 6 – Возможности современных систем автоматической оптической 

инспекции 

 

Неправильная установка электронных компонентов – одна из причин 

возникновения неисправностей в печатных узлах. Возможность 

правильной/неправильной установки электронного компонента зависит не 

только от его вида, но и от типа корпуса, в котором он размещён (рис. 7, 8).  

Резистор Неполярный 

конденсатор 

Неполярный 

разъем 

Транзисторы, 

диодные 

сборки 

Предохранители 

всех типов 

 

  

 
 

Рисунок 7 – Электронные компонентов, которые нельзя установить 

неправильно 
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Диод Стабилитрон Транзистор Полярный 

конденсатор 

Светодиод Микросхемы в 

большинстве типов 

корпусов 

 

 

 

 

 

 

Рисунок 8 – Электронные компонентов, которые можно установить 

неправильно и это приведёт к неисправности печатного узла 

 

Неисправности, связанные с установкой электронных компонентов 

типов и номинальных значений отличных от тех, что указаны в спецификации 

– перепутаны номиналы. Ввиду явной причины их возникновения – 

человеческого фактора – более характерны для процесса ручного монтажа 

печатных узлов. Обрывы и замыкания – также достаточно часто 

встречающиеся неисправности в печатных узлах. Неисправности в виде 

обрывов и замыканий могут возникать, как и с дорожками печатной платы, так 

и в электронных компонентах [19].  

На печатном узле может возникнуть как одиночная неисправность, так 

и несколько разных неисправностей одновременно: две, три и т.д. Ввиду того, 

что одновременное возникновение одновременно нескольких неисправностей 

у одного печатного узла имеет достаточно низкую вероятность, то имеет 

смысл ограничиться в рассматриваемой модели одиночными и двойными 

неисправностями. 

Автоматизацию существующих методов тепловизионного 

неразрушающего контроля усложняют ряд ограничений таких как: сложность 

интерпретации результатов, высокая стоимость оборудования. Для решения 

проблемы поиска скрытых дефектов и оптимизации процессов контроля и 

диагностики печатных узлов предлагается внедрение программно-
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аппаратного комплекса, реализующего тепловизионный метод 

неразрушающего контроля и диагностики печатных узлов [20].  

 

1.3 Тепловизионный контроль. Современные методы тепловизионного 

контроля 

Тепловизионный контроль (или тепловой неразрушающий контроль – 

метод диагностики, основанный на регистрации и анализе теплового 

(инфракрасного) излучения объектов. Его применение в радиоэлектронике 

базируется на фундаментальном физическом принципе: любое протекание 

электрического тока через неидеальный проводник (обладающий 

сопротивлением) сопровождается выделением тепла.  

Закон Джоуля-Ленца: количество теплоты Q, выделяемое в проводнике, 

пропорционально квадрату силы тока I, сопротивлению R и времени t: 

Q = I² R t. (5) 

Нагретое тело испускает электромагнитное излучение в инфракрасном 

(ИК) диапазоне (длины волн от ~0,74 мкм до 1000 мкм). Интенсивность и 

спектральное распределение этого излучения описывается законом Стефана-

Больцмана и законом смещения Вина [21– 22]. 

Закон Стефана-Больцмана: полная энергетическая светимость M  

абсолютно черного тела пропорциональна четвертой степени его абсолютной 

температуры T:  

M = σ T⁴, (6) 

где σ – постоянная Стефана-Больцмана. Энергетическая светимость реальных 

объектов (серые тела) описываются формулой 

M = ε σ T⁴, (7) 

где ε – коэффициент теплового излучения (эмиссионная способность) – 

ключевой параметр для тепловизионных измерений. 

Ключевые компоненты тепловизора: 
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Оптика. Изготавливается из редких материалов (например, германий, 

селенид цинка), прозрачных для ИК-лучей. Обычное стекло для ИК-диапазона 

непрозрачно. 

Матрица детекторов (фокальная плоскость). Современные тепловизоры 

используют неохлаждаемые микроболометрические детекторы. Каждый 

пиксель болометра представляет собой микроскопический терморезистор, чье 

сопротивление меняется при нагреве от ИК-излучения. Матрица формирует 

детальное температурное поле. 

Система обработки сигнала. Усиливает слабый сигнал с матрицы, 

оцифровывает его и привязывает к каждому пикселю значение температуры. 

Процессор и программное обеспечение. Выполняет сложные 

вычисления: учет коэффициента излучения, отраженной температуры, 

температуры окружающей среды, атмосферной коррекции. Строит 

термограммы, изотермы, позволяет проводить анализ по областям, строить 

графики изменения температуры во времени. 

Настройки тепловизора для точных измерений [23]: 

Для точного измерения температуры объекта необходимо корректно 

выставить его коэффициент излучения ε. Для чистых металлов он низкий (0,1– 

0,3), для окисленных металлов и неметаллов – высокий (0,8– 0,95). Для точных 

измерений на пластинах часто используют черную матовую краску с ε ≈ 0,95. 

Отраженная кажущаяся температура. Учет температуры окружающих 

объектов, которые могут отражаться от блестящей поверхности исследуемого 

компонента и искажать измерения. 

Атмосферная коррекция. Влажный воздух и пыль поглощают ИК-

излучение. Для точных измерений на больших дистанциях это необходимо 

учитывать.  

Для классификации методов теплового контроля изделий 

радиоэлектроники существуют два основных подхода: 

 Пассивный метод контроля. Объект находится в рабочем режиме (под 

напряжением) в нормальных условиях. Его тепловое поле статично или 
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медленно меняется. Контроль тепловых режимов, поиск перегретых 

компонентов из-за перегрузок, плохого теплоотвода, дефектов, вызывающих 

повышенное энергопотребление [24]. Основное достоинство пассивного 

метода контроля – простота, не требует создания внешних воздействий на 

объект. Недостаток – невозможно выявить латентные (скрытые) дефекты, 

которые не проявляются в статическом режиме: плохая пайка, не приводящая 

пока к перегреву. 

Активный метод контроля. На объект воздействуют внешним 

стимулирующим энергетическим фактором (тепловым, механическим, 

электрическим), чтобы спровоцировать проявление дефекта [25]. Контроль 

ведется в динамике – во время нагрева или, что чаще, во время остывания 

объекта. 

Виды воздействий: 

Импульсный (мгновенный нагрев) – короткий мощный импульс тока 

или световая вспышка (используются ксеноновые лампы). Дефектные области 

(трещины, расслоения, пустоты под чипами) остывают иначе, чем исправные. 

Постоянный (длительный нагрев) – объект нагревается в течение 

длительного времени до установления стационарного теплового режима. 

Вибротермический – сочетание механической вибрации и теплового 

контроля. Дефектные области (трещины) нагреваются от трения краев. 

Синхронное детектирование – объект возбуждается модулированным 

(синусоидальным) сигналом. Тепловизор синхронизирован с этим сигналом. 

Это позволяет выделить очень слабые тепловые сигналы на фоне шумов и 

значительно повышает чувствительность и помехозащищенность метода [26]. 

Области применения в радиоэлектронике для контроля качества 

монтажа печатных узлов: 

Дефекты пайки: холодная пайка (недостаточный нагрев), перегрев, 

отсутствие пайки, перемычки. 

Целостность соединений: обрывы дорожек, микротрещины. 
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Полярность компонентов: неправильно установленные диоды, 

электролитические конденсаторы часто имеют иной тепловой образ. 

Выявление перегруженных цепей: компоненты, работающие на 

предельных режимах. 

Короткие замыкания (КЗ) – локальный сильный перегрев в точке КЗ. 

Обрывы – «холодная» область на месте потенциально греющегося 

компонента. 

Анализ p-n переходов – проверка интегральных схем на предмет 

дефектных переходов, которые могут не проявляться электрически, но иметь 

аномальную утечку, ведущую к нагреву [27]. 

Анализ тепловых режимов и систем охлаждения: 

Верификация тепловых расчетов – сравнение расчетных и реальных 

температурных полей. 

Оценка эффективности радиаторов – равномерность прогрева 

радиатора, наличие «горячих» точек. 

Контроль тепловых контактов – качество прилегания компонента к 

радиатору через термопрокладку или пасту. 

Дрейф в сторону ухудшения параметров компонентов, зависящих от 

температуры, может указывать на начинающуюся деградацию компонентов 

(высыхание электролитических конденсаторов, деградация 

полупроводниковых переходов). 

Быстрый визуальный поиск перегретых компонентов на сложной плате 

без необходимости проведения множественных электрических измерений.  

Коэффициент излучения ε – это ключевой параметр для точных 

тепловизионных измерений. Коэффициент излучения – это безразмерная 

величина от 0 до 1, которая характеризует способность поверхности материала 

излучать инфракрасную энергию по сравнению с идеальным излучателем 

– абсолютно черным телом (АЧТ, ε=1). АЧТ поглощает всё падающее на него 

излучение. Реальные объекты – это «серые тела» (0 <ε <1) [28–29]. Значение ε 
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зависит от материала, состояния поверхности, геометрии, температуры и 

длины волны ИК-детектора [30].  

Методика измерения температуры в изделиях радиоэлектроники: 

Определение коэффициента излучения ε объекта. С помощью 

справочных таблиц – использование таблиц с указанием ε для различных 

материалов и состояний поверхности. Экспериментальный метод – нагреть 

объект до известной температуры (измеренной контактным термометром) и 

подобрать значение ε в настройках тепловизора так, чтобы он показывал ту же 

температуру. Метод маскирования/маркировки – нанести на объект материал 

с известным высоким ε – матовая черная изолента, специальная черная 

матовая краска. Настроить тепловизор на правильное измерение температуры 

этой метки. Затем, не меняя условий, измерить температуру окружающей 

поверхности, подобрав значение ε так, чтобы температуры совпали [31]. 

Измерение/оценка отраженной температуры. Использовать матовый 

черный предмет (например, кусок изоленты, сложенный липкой стороной 

наружу) или специальный диффузный отражатель. Направить на него 

тепловизор под углом, близким к углу наблюдения за объектом и измерить его 

температуру.  

Коррекция на атмосферу. Ввести в тепловизор расстояние до объекта, 

температуру и влажность воздуха. Только после корректной установки этих 

трех параметров (ε, отраженная температура, атмосфера) показания 

тепловизора можно считать идеальными для точного анализа. 

1.4 Оценка влияния размера партии ПУ и опыта контроллеров на 

оперативность процесса тепловизионного контроля и диагностики 

Прежде чем совершенствовать средство диагностирования ПУ, 

реализующее тепловизионный метод неразрушающего контроля, 

целесообразно на имитационной модели проверить возможность повышения 

оперативности его проведения [32]. 

Параметр оптимизации Y – цель имитационного эксперимента 

выраженная количественно: 
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Y=T1/Т2, (8) 

где T1 – время, затрачиваемое на контроль и диагностику партии печатных 

узлов без предварительного тепловизионного контроля (результат 

моделирования), Т2 – время, затрачиваемое на контроль и диагностику партии 

печатных узлов с предварительным тепловизионным контролем, которое 

рассчитывается по следующей формуле: 

          Т2 = (tG NG) + (tINI) + (tNINNI), (9) 

где: tG=5 минут – среднее время контроля исправных ПУ, tI=10 минут – 

среднее время контроля и ремонта ПУ с обнаруженным дефектом, tNI=30 

минут – среднее время контроля и ремонта ПУ с необнаруженным дефектом 

опытным контролером. NG – количество исправных печатных узлов, NI – 

количество печатных узлов с обнаруженной неисправностью, NNI – 

количество печатных узлов с нераспознанной неисправностью. На параметр 

оптимизации Y влияет 5 факторов: размер партии ПУ, соотношение среднего 

времени, затрачиваемого на ремонт опытным и неопытным контролерами, а 

также вышеуказанные величины NG, NI, NNI, которые в сумме должны давать 

константу – размер диагностируемой партии ПУ. 

Имитационный эксперимент удобно проводить согласно плану, 

используемому в планах для смесей – симплекс-центроидному плану 

эксперимента. При этом факторы NG, NI, NNI лежат в основе диаграммы на 

треугольнике. Параметры «размер партии ПУ» и «соотношение времени, 

затрачиваемое на ремонт опытным и неопытным контроллерами» разбивают 

весь имитационный эксперимент на 3x3=9 блоков. Результаты моделирования 

представлены на рисунке 9. 
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Рисунок 9 – Визуализация результатов компьютерного эксперимента на 

имитационной модели, реализованной в виде программы «СканСим» 

(приложение Г) 

 

Анализ результатов проведённого компьютерного эксперимента 

показал, что размер партии ПУ на оперативность процесса тепловизионного 

контроля и диагностики практически не влияет, в то время как соотношение 

опыта контроллеров влияет и влияние это тем больше, чем больше разнице в 

опыте и тем больше, чем больше в партии печатных узлов с дефектами.  

Кроме размера партии определим влияние уровня компетентности 

контролера на время проведения диагностики и исправления возникающих 

неисправностей печатного узла. Для выявления уровня компетентности 

контролера необходимо проводить периодическое тестирование, включающее 
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в себя не только базовые навыки диагностики, а также проверку теоретических 

знаний в области, проверку на стрессоустойчивость и концентрацию внимания 

[33]. Условно, можно выделить 3 основных блока для проверки контролеров 

(табл.3). 

Таблица 3 – Блоки для тестирования контролеров 

Блок тестирования Процесс, выполняющийся в блоке 

Анкетирование 

контролера 

Сбор данных о разряде контролера 

Сбор данных об опыте работы 

Проверка теоретических знаний 

Тестирование контролера 

Работа с программным обеспечением для управления РЭС и 

анализа данных 

Проведение тестирования на стрессоустойчивость 

Проверка контролера на 

аналитические 

способности 

Проверка на аналитические способности и поиск 

закономерностей причин возникновения несоответствий в 

ПУ 

 

По результатам проверки контролеру присваивается условная 

классификация и закрепляется определенный вид работ по уровню сложности.  

Оценка возможности внедрения автоматизированной системы контроля 

и диагностики печатных узлов проведена с помощью имитационного 

моделирования процесса диагностики. На предприятиях, производящих 

печатные узлы для радиоэлектронных систем, обычно применяется 

классическая система контроля и диагностики, логика которой представлена 

на рисунке 10. 
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Рисунок 10 – Классическая система контроля и диагностики печатных узлов 

на предприятиях 

 

Смонтированные вручную или на линии печатного монтажа, печатные 

узлы случайным образом распределяются между контролерами, 

осуществляющими контроль и диагностику. Поскольку крайне маловероятно, 

что контролеры имеют абсолютно одинаковый опыт работы, то возможны 

ситуации, когда печатные узлы со сложной неисправностью попадают менее 

опытному контролеру и, чем больше подобных печатных узлов попадается, 

тем дольше менее опытный оператор задерживает процесс контроля партии 

печатных узлов. Нежелательна также ситуация, когда печатные узлы, 

содержащие простые неисправности, либо вовсе без неисправностей, 

попадают опытному контролеру. В последнем случае время опытного 

контролера используется нерационально.  

Поскольку печатные узлы с различными неисправностями 

распределяются среди контролеров фактически случайным образом, то для 

оценки времени контроля всех печатных узлов в партии целесообразно 

использовать имитационное моделирование. Алгоритм работы имитационной 

модели представлен на рисунке 11. 
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Рисунок 11 – Алгоритм, реализующий имитационную модель случайного 

распределения печатных узлов между контролерами с различным опытом 

работы 

Начало 

Инициализация констант  

Генерация партии 

печатных узлов 

Перемешивание печатных узлов в  

партии для имитации случайного выбора 

Инициализация: 

ТС=-1– счетчик рабочих минут 

TW1=0 – время работы контролера 1 

TW2=0– время работы контролера 2 

Plate=0 – номер проверяемого печатного узла 
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Да Нет 

Нет Да 
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Структура имитационной модели: 

Скрипт имитационной модели начинается с инициализации: задания 

объёма партии печатных узлов, процента полностью исправных печатных 

узлов, процента печатных узлов с выявленной неисправностью. 

Далее формируется строка, имитирующая распределение печатных 

узлов с заданной размерностью партии. Строка начинается с печатных узлов, 

не содержащих неисправности (обозначаются латинской буквой G – good). 

Следующими по порядку идут печатные узлы с выявленными 

неисправностями (I – identified). Замыкают строку печатные узлы со 

сложными неидентифицированными неисправностями (NI – non identified). 

Далее элементы строки перемешиваются случайным образом, например 

изначально сформированная строка вида [`G`,`G`,`I`,`I`,`I`,`NI`] 

трансформируется путём случайного перемешивания элементов в строку вида 

[`I`,`NI`,`G`, `I`,`G`,`I`]. 

Визуализация результата моделирования (рис.12), которая имитирует 

процесс контроля и диагностики путём отсчета времени моделирования в 

минутах и проверки на каждой минуте не освободился ли контролер(ы). В 

случае, если какой-то из контролеров освободился, то он забирает следующий 

непроверенный печатный узел на время, которое определяется видом 

неисправности печатного узла [34].  
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Рисунок 12 – Визуализация результата моделирования контроля и 

диагностики путём отсчета времени моделирования в минутах 

 

Из результатов моделирования, приведённой на рисунке 12 видно, что 

общее время контроля и диагностики партии печатных узлов составляет 306 

минут и определяется общим временем работы менее опытного работника 

номер 1. 
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Внедрение предварительного тепловизионного контроля печатных 

узлов даёт возможность повысить эффективность процесса их контроля и 

диагностики за счёт рационального использования квалификации контролеров 

– распределения печатных узлов с неисправностями различной сложности 

между операторами разного уровня подготовки (рис. 13).  

 

Рисунок 13 – Предлагаемое усовершенствование процесса контроля и 

диагностики печатных узлов  

 

Скорость контроля и диагностики партии печатных узлов возрастает, так 

как печатные узлы со сложными дефектами попадают более опытному 

оператору, который, в среднем осуществляет контроль и диагностику 

подобных печатных узлов быстрее, чем менее опытный оператор. 

Общее время выполнения контроля и диагностики партии печатных 

узлов Тобщ: 

Тобщ = max{Tоп1, Tоп2},  (10) 

Монтаж печатных узлов 

Предварительный тепловизионный контроль печатных узлов. 

Разделение печатных узлов на группы с простыми и сложными 

дефектами 

Хранение печатных узлов со 

сложными дефектами перед 

контролем и диагностикой 

Хранение печатных узлов с 

простыми дефектами перед 

контролем и диагностикой 

Контроль печатного узла 

опытным контролером 

Контроль печатного узла 

менее опытным контролером 

Хранение печатных узлов, прошедших контроль и диагностику 
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где: Топ1 – общее время работника номер 1 (менее опытного), минут; Топ2 – 

общее время работника номер 2 (более опытного), минут. 

Tоп1 = TG + TI, (11) 

Tоп2 = TNI, (12) 

где: ТG – общее время, затрачиваемое на контроль печатных узлов без 

дефектов, минут; ТI – общее время, затрачиваемое на контроль печатных узлов 

с выявленным дефектом, минут; ТNI – общее время, затрачиваемое на контроль 

печатных узлов с не выявленными дефектами, минут.  

В партии из 20 печатных узлов 10 узлов не содержат неисправностей, 5 

узлов содержит выявленную неисправность, 5 – содержат сложную 

неисправность. Рассчитаем по приведённым выше формулам время, 

затрачиваемое каждым на контроль и диагностику в случае внедрения 

предварительного тепловизионного контроля: 1 10 2 5 5 45ОПT =  +  =  минут. 

2 5 30 150ОПT =  = минут. 

Тогда общее время, затраченное на контроль и диагностику партии 

печатных узлов составляет: Тобщ = max{Tоп1, Tоп2} = max {45,150} = 150 минут, 

что почти в два раза меньше, чем время, затрачиваемое контролерами на 

проверку партии печатных узлов без предварительной проверки с помощью 

тепловизионного метода контроля. 

 

1.5 Разработка программно-аппаратного комплекса, реализующего 

тепловизионный метод неразрушающего контроля печатных узлов 

1.5.1 Разработка аппаратной части программно-аппаратного комплекса 

Программно-аппаратный комплекс – система, объединяющая 

аппаратные средства (оборудование) и программное обеспечение, которые 

работают совместно как единое целое для решения конкретных задач. ПАК 

отличается от обычного компьютера тем, что его аппаратная и программная 
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части не могут быть реализованы по отдельности, а сам комплекс является 

законченным продуктом [35].  

Состав программно-аппаратного комплекса, реализующего 

тепловизионный метод неразрушающего контроля: 

Аппаратная часть – физическое оборудование для сбора и обработки 

данных, например, компьютер, биометрический детектор, калибратор или 

встроенное устройство. Программная часть – специализированное 

программное обеспечение, которое интерпретирует и обрабатывает данные, 

собранные аппаратной частью.  

Общая структура программно-аппаратного комплекса, реализующего 

тепловизионный метод неразрушающего контроля печатных узлов 

представлена на рисунке 14. 

 
 

Рисунок 14 – Структура и алгоритм работы программно-аппаратного 

комплекса, реализующего тепловизионный метод неразрушающего контроля 

  

ПАК, реализующий метод тепловизионного контроля, позволяющий 

автоматизировать регистрацию теплового поля диагностируемого устройства 

получаемого с помощью теплового датчика и дальнейшую передачу на 

компьютер для обработки полученных результатов состоит из следующих 

компонентов:  
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Модуль тепловизора AMG8833 (рис.15) позволяет получить 

изображение c разрешением 8х8 пикселей в инфракрасном диапазоне 

теплового спектра (от 0,74 мкм до 1000 мкм), а также определить температуру 

в каждой точке изображения в диапазоне от 0 до 80°С. Модуль содержит 

матрицу из 64 (8х8) пикселей, чувствительную к инфракрасному спектру, а 

также фокусирующую линзу с углом обзора 60° по вертикали и горизонтали. 

Качество исходного изображения с модуля AMG8833 может быть 

улучшено путем увеличения разрешения с применением методов 

математической интерполяции, реализованных в библиотеке Adafruit 

AMG88xx Library. 

 

Рисунок 15 – Модуль тепловизора AMG8833  

 

Arduino Uno R3 (USB ATmega16U2) – электронный модель Uno c 

микроконтроллером ATmega16U2 используется в качестве преобразователя 

USB–UART [36] (рис. 16). 

 

Рисунок 16 – Внешний вид модуля Arduino UNO R3 
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Передача данных от модуля тепловизора в модуль Arduino 

осуществляется посредством протокола I2C – последовательная 

асимметричная шина для связи между интегральными схемами внутри 

электронных приборов [37]. Основные технические характеристики 

аппаратной части ПАК приведены в таблице 4. 

Таблица 4 – Основные технические характеристики аппаратной части 

программно-аппаратного комплекса 

Функциональный 

узел 

Характеристика Единица 

измерения  

Значение 

Модуль тепловизора 

AMG8833 

 

Разрешение Пикселей 8х8 

Температурный диапазон oC 0...80 

Угол обзора o 60 

Интерфейс – I2C 

Потребляемый ток мА 4,5 

Напряжение питания В 3.3...5 

Преобразователь 

интерфейсов на базе 

Arduino UNO R3 

Тип микроконтроллера – ATmega328P 

Интерфейсы – UART, I2C, SPI 

Напряжение питания В 5 

 

Модуль Arduino осуществляет передачу данных с модуля тепловизора к 

компьютеру через USB порт для дальнейшей обработки данных [38]. С 

помощью языка программирования Python выводятся данные в виде 

восьмибитного кода Utf8, после чего данные декодируются с помощью 

функции encoding in Python.  

Назначение ПАК: использование в процессе производства электроники 

для контроля и диагностики неисправностей печатных узлов с помощью 

автоматизированного анализа, полученных термограммы.  
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Основные задачи, реализуемые ПАК: выявление перегревов, контроль и 

диагностика печатных узлов, диагностика микросхем и силовых компонентов, 

обнаружение коротких замыканий и обрывов печатных проводников, 

проверка теплоотвода и эффективности радиаторов.    

Принцип работы ПАК: система сочетает тепловизионную съемку, 

автоматизированную обработку данных и искусственный интеллект для: 

бесконтактного измерения температурных полей, выявления аномалий 

(перегрев, дефекты пайки, короткое замыкание, плохой теплоотвод), на основе 

анализа тепловых паттернов. Общий вид программно-аппаратного комплекса, 

реализующего тепловизионный метод неразрушающего контроля и 

диагностики представлен на рисунке 17. 

 

Рисунок 17 – Внешний вид программно-аппаратного комплекса, 

реализующего тепловизионный метод неразрушающего контроля  

 

Аппаратная часть ПАК состоит из следующих функциональных узлов: 

– позиционирующее оборудование – штатив с посадочным местом 

для установки тестируемого печатного узла;   
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– модуль тепловизора AMG8833; 

– преобразователь интерфейсов I2C-USB на базе Arduino UNO R3; 

– USB-кабель для подключения к персональному компьютеру;   

– кабель подключения тестируемого печатного узла к сети 220 

Вольт 50Гц с защитным устройством. 

Общая схема аппаратной части ПАК, реализующего тепловизионный 

метод неразрушающего контроля печатных узлов представлен на рисунке 18. 

 

Рисунок 18 – Схема аппаратной части программно-аппаратного комплекса 

В качестве объекта исследования использовался печатный узел 

импульсного источника питания.  

 

1.5.2 Разработка программной части программно-аппаратного 

комплекса  

Программная часть программно-аппаратного комплекса, реализующего 

тепловизионный метод неразрушающего контроля и диагностики состоит из 

следующих программных модулей:   

– программный модуль для анализа термограмм – формирование 

термограммы – цветового отображение температурных полей, распознавание 



40 
 

неисправностей печатных узлов с помощью предварительно обученной 

искусственной нейронной сети;    

– программный модуль для обучения искусственной нейронной 

сети; 

– электронная таблица для формирования обучающей выборки, 

например: LibreOffice, Onlyoffice, МойОфис или MS Office. 

Программные модули реализованы на языке программирования Python 

и могут работать как приложения к операционным системам MS Windows и 

Linux. 

Порядок проведения контроля и диагностики печатных узлов с 

помощью ПАК:   

– настройка тепловизора – выбор диапазона, калибровка;  

– подготовка печатного узла к снятию термограммы: электрическое 

подключение, прогрев, стабилизация температурного режима;   

– проведение измерения – снятие термограммы (статический 

контроль);   

– анализ данных термограммы с помощью искусственной 

нейронной сети – выявление перегретых компонентов.   

Алгоритм обработки данных программной части программно-

аппаратного комплекса, реализующего тепловизионный метод 

неразрушающего контроля и диагностики представлен на рисунке 19.   
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Рисунок 19 – Алгоритм обработки данных программной части ПАК 

 

В ходе работы применяется обработка изображений в цветовое 

пространство RGB (Red, Green, Blue) – это аддитивная цветовая модель, 

которая описывает, как создать широкий спектр цветов, смешивая три 

основных цвета: красный, зеленый и синий. Эта модель используется в 

цифровых устройствах, таких как экраны компьютеров, смартфонов и 

телевизоров, для отображения изображений. Каждый цвет в модели RGB 

имеет свою интенсивность, которая выражается числовым значением, и их 

комбинация позволяет получить миллионы различных оттенков.  

Для преобразования температуры в цветовое пространство RGB 

используется линейная интерполяция между тремя базовыми цветами: 



42 
 

Tnorm = max (0, min (T, 100)) / 100, (13) 

где T ∈ [0, 100] °C – измеренная температура, Tnorm ∈ [0, 1] – нормализованное 

значение. 

Линейная интерполяция – простой метод нахождения промежуточных 

значений функции путём соединения известных точек прямыми линиями и 

приближенного представления функции в виде ломаной линии. Его формула 

для точки между (x₁, y₁) и (x₂, y₂) выглядит так: 

f(X) = f(X₁) + (f(X₂) – f(X₁)) (X – X₁) / (X₂ – X₁).  (14) 

  

Метод широко используется в вычислительной математике, для 

восстановления изображений и в системах ЧПУ для управления движением 

режущего инструмента. Этапы обработки данных при линейной 

интерполяции: 

Определение интервала. Выбирается участок (интервал) между двумя 

известными точками данных, в котором находится искомое значение 

аргумента.  

Построение отрезка. Предполагается, что функция на этом участке 

является прямой линией.  

Вычисление значения. Используется формула линейной интерполяции, 

которая позволяет рассчитать значение функции в интересующей точке, 

лежащей на этом отрезке.  

Сокращение размера таблиц с функциями, когда значения в точках, 

отсутствующих в таблице, вычисляются с помощью линейной интерполяции.  

Обработка изображений. Для заполнения пробелов между пикселями и 

повышения качества изображения. Для этого используются 

методы интерполяции, например, в программах для обработки изображений, 

которые добавляют новые пиксели, вычисляя их цвет на основе соседних 

пикселей. Интерполяция в обработке изображений – это процесс создания 

новых пикселей на основе существующих данных.  

Увеличение разрешения (масштабирование). При увеличении 

изображения добавляются новые пиксели, чтобы сделать его более 
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детализированным.  Линейная интерполяция. Наиболее простой метод, 

который определяет цвет нового пикселя, проводя прямую линию между 

цветами соседних пикселей.  Полиномиальная интерполяция. Более сложные 

методы, использующие полиномы для более точного моделирования и 

заполнения пробелов, что обеспечивает лучшее соответствие данным.  Шаг 

пикселя на светодиодных экранах (или шаг точки) – это расстояние между 

центрами соседних пикселей.  Меньший шаг – меньше пустого пространства 

между пикселями, что приводит к более высокой плотности пикселей, лучшей 

детализации изображения и возможности отображать больше 

текста.  Больший шаг – большее расстояние между пикселями, что может 

привести к менее детализированному изображению. Для Tnorm ∈ [0, 0.5]: 

R = 0; 

G = [2 · Tnorm · 255]; 

B = [(1 – 2 · Tnorm) · 255]. 

Для Tnorm ∈ [0.5, 1]: 

R = [2 · (Tnorm – 0.5) · 255]; 

G = [(1 – 2 · (Tnorm – 0.5)) · 255]; 

B = 0. 

Преобразование RGB в HEX-формат. HEX-формат, или 

шестнадцатеричный формат, – это способ представления данных, 

использующий шестнадцатеричную систему счисления (цифры от 0-9 и буквы 

от A-F) для кодирования информации. Он используется в различных областях: 

для кодирования цветов (например, #FF0000 для красного), для хранения и 

передачи бинарных данных в текстовом виде в микроконтроллерах (формат 

Intel HEX), а также как инструмент анализа файлов в PowerShell для выявления 

их содержимого.  

HEX = #{:02x} {:02x} {:02x}. format (R, G, B). (15) 

Данные поступают с 64 датчиков температуры, организованных в вектор 

столбец из матрицы 8х8: 
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T = [T₁₁, T₁₂, ..., T₁₈, T₂₁, ..., T₈₈] ∈ R⁶⁴.      (16) 

Преобразование матрицы в тензор: 

x = [T₁₁, T₁₂, ..., T₈₈] ∈ R⁶⁴. (17) 

Визуализация температурного поля. Отображение в матрице 8×8. Для 

каждого датчика с координатами (i, j), где i, j ∈ {1, ..., 8}: цветᵢⱼ = Tᵢⱼ. 

Работа программной части с последовательным портом. Идентификация 

устройства: устройство идентифицируется по VID (Vendor ID) и PID (Product 

ID): 

device = find_by_vid_pid(0x0403, 0x6001) (18) 

Чтение данных. Данные передаются в формате: 

[temp₁, temp₂, ..., temp₆₄]. 

Обработка данных о температурах исследуемого объекта включает: 

Поиск маркеров начала '[' и конца ']'. 

Преобразование строк в числа с плавающей точкой. Программное 

описание интерфейса. Геометрия окна: 

width = 421 pixels; 

height = 570 pixels; 

aspect_ratio = 421/570 ≈ 0.739. 

Распределение элементов – сетка датчиков: 8×8 элементов. Текстовое 

поле занимает нижнюю часть интерфейса. Полоса прокрутки: справа от 

текстового поля. Цветовая модель. Используется RGB-цветовое пространство 

с преобразованием в HEX-формат для совместимости с библиотекой Tkinter. 

Обработка исключений. Система включает обработку прерывания по 

сочетанию клавиш Ctrl+C для корректного закрытия последовательного порта. 

Буферизация данных [39]. Используется механизм опроса для эффективного 

чтения данных с последовательного порта. 

 

Введем временные задержки для обеспечения надежного чтения данных 

из буфера последовательного порта: 
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delay = 0.1 seconds. (19) 

Данная система представляет собой законченное решение для 

визуализации температурного поля с 64 датчиков, с реализацией интерфейса 

для отображения данных в реальном времени на графическом окне. Все 

обработанные данные термограммы, полученные при тепловизионном 

контроле с помощью разработанного ПАК поступают на вход искусственной 

нейронной сети для дальнейшей классификации дефектов печатного узла.  

 

Выводы к главе 1 

Надежность изделий радиоэлектроники зависит от большого количества 

факторов различной природы и, согласно нормативной документации, 

характеризуется рядом показателей.  Поскольку, многие изделия электроники 

не содержат элементов резервирования, то отказ даже одного элемента может 

привести к отказу всего изделия. Это обусловливает повышенные требования 

к качеству изготовления и полноте диагностики применяемой электронной 

компонентной базы. 

Анализ современных методов контроля и диагностики печатных узлов 

показал развитый арсенал неразрушающих методов, некоторые из которых 

поддаются автоматизации и активно используются в приборостроении: 

автоматическая оптическая инспекция, автоматизированная лазерная 

дефектоскопия, автоматизированная акустическая инспекция. Данные методы 

используются для выявления дефектов в материалах и конструкциях, но не 

позволяют диагностировать электронную компонентную базу. Наиболее 

подходящим из известных методов диагностики компонентной базы является 

метод неразрушающего бесконтактного тепловизионного контроля, системы 

на базе которого могут усовершенствованы с помощью внедрения в них 

технологий автоматизированной обработки данных.   

Рассматриваемый в данной работе неразрушающий метод контроля 

потенциально может выявлять различные дефекты печатных узлов: дефекты 
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соединений, правильность установки электронных компонентов, неисправные 

и некачественные электронные компоненты, неправильно установленные 

элементы охлаждения. Проведенный имитационный эксперимент показал 

целесообразность внедрения ПАК на производстве, так как он позволяет 

сократить общее время контроля партии печатных узлов. 

Представленный в данной работе программно-аппаратный комплекс 

тепловизионного неразрушающего контроля позволяет повысить степень 

автоматизации процессов контроля и диагностики, позволяет выявлять 

скрытые дефекты печатных узлов и обеспечивает повышение оперативности 

проведения контроля и диагностики печатных узлов до 20%, в сравнении с 

ручным методом, предотвращая появления возможных ошибок, связанных с 

человеческим фактором. Его аппаратная часть состоит из модуля тепловизора 

и преобразователя интерфейсов для ввода данных в компьютер. Программная 

часть комплекса содержит в себе скрипт, преобразующий передаваемые с 

тепловизора данные для их последующих визуализации в виде термограммы 

и анализа с помощью классифицирующей искусственной нейронной сети. 
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Глава 2 Разработка математической модели обработки термограмм 

печатного узла для классификации неисправностей печатных узлов 

2.1 Методы обучения моделей 

Обучение нейронных сетей или моделей машинного обучения можно 

провести разными способами в зависимости от исходных данных и 

поставленной задачи.  

Обучение с учителем  

В обучении с учителем модель обучается на размеченных данных. Это 

означает, что каждому примеру в обучающей выборке соответствует 

правильный ответ (метка или целевое значение). Задача модели – определить 

взаимосвязь между входными данными и выходными, чтобы делать точные 

прогнозы для новых, ранее неизвестных для модели входных данных [40]. 

Обучение с учителем делится на два основных типа задач: 

Классификация – предсказание категориального класса или числового. 

Классификация может быть двух видов: бинарная и многоклассовая [41]. 

Выход модели – вероятность принадлежности к каждому классу или 

конкретный класс. 

Регрессия – предсказание непрерывного числового значения. Выход 

регрессии – число. 

Основные алгоритмы, для решения задач обучения с учителем: 

Для классификации: логистическая регрессия, метод опорных векторов 

(SVM), деревья решений, random Forest, наивный байесовский классификатор, 

k-Nearest Neighbors (k-NN), нейронные сети [42]. 

Для регрессии: линейная регрессия, полиномиальная регрессия, деревья 

решений, random Forest, гребневая регрессия (Ridge), лассо регрессия (Lasso), 

нейронные сети [43]. 

Общий вид этапов процесса обучения с учителем: 

– сбор данных: сбор пар “входные данные – правильный ответ"; 

–  предобработка: очистка, нормализация, обработка пропусков; 

–  разделение на выборки.  
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Данные делятся на: 

– обучающую выборку – данные, на которых модель 

непосредственно обучается;  

– валидационную выборку – на этих данных настраиваются 

гиперпараметры модели и проводится промежуточная оценка;  

– тестовую выборку – не должна использоваться в процессе 

обучения – на ней проводится финальная оценка качества модели после всего 

процесса обучения и настройки. 

 

Обучение без учителя  

В обучении без учителя модели работают с данными без меток. Метка – 

заранее размеченные данные, указывающие на правильный ответ. Цель 

состоит в том, чтобы найти скрытые структуры, закономерности или 

аномалии в данных [44]. Модель пытается научиться самостоятельно 

организовывать информацию. 

Задачи, которые решаются обучением без учителя: 

Кластеризация – разделение набора данных на группы (кластеры) таким 

образом, чтобы объекты внутри одной группы были более похожи друг на 

друга, чем на объекты из других групп. Алгоритмы кластеризации: k-means, 

DBSCAN, иерархическая кластеризация, Gaussian Mixture Models [45]. 

Понижение размерности – уменьшение количества признаков в данных, 

сохраняя при этом как можно больше важной информации. Используется для 

визуализации, сжатия данных или ускорения обучения.  

Выявление аномалий – обнаружение редких и нестандартных 

наблюдений, которые сильно отличаются от большинства данных. 

Используемые алгоритмы: Isolation Forest, One-Class SVM, DBSCAN. 

Ассоциативные правила – обнаружение интересных взаимосвязей 

между переменными в больших базах данных. Алгоритмы: Apriori, FP-Growth. 

Процесс сильно отличается от обучения с учителем из-за отсутствия 

меток. Основные этапы: 
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–  сбор и предобработка данных; 

–  выбор алгоритма в зависимости от цели; 

–  обучение модели – алгоритм ищет паттерны в данных, оптимизируя 

свой внутренний критерий, например, минимизируя расстояние внутри 

кластеров для алгоритма k-means. 

–  интерпретация результатов – самый сложный и субъективный этап, 

поскольку аналитик должен самостоятельно понять и объяснить, что означают 

найденные кластеры или главные компоненты.  

 

Полуавтоматическое обучение  

Это гибридный подход, который стремится совместить преимущества 

обучения с учителем и без учителя. Полуавтоматическое обучение использует 

для обучения как небольшое количество размеченных данных, так и большое 

количество неразмеченных. Идея заключается в том, что разметка данных – 

это дорого и трудоемко, а неразмеченные данные часто легко получить. Этот 

метод пытается использовать скрытые структуры в неразмеченных данных 

для улучшения модели, построенной на небольшом размеченном наборе. 

Методы полуавтоматического обучения работают, только если верны 

определенные предположения о данных. 

 

Обучение с подкреплением  

В обучении с подкреплением используется программный агент, который 

совершает действия в среде. За каждое действие он получает вознаграждение, 

которое может быть положительным или отрицательным [46]. Цель агента – 

научиться такой стратегии (политике), которая максимизирует суммарное 

вознаграждение на длительной перспективе.  

Метод проб и ошибок с отложенным вознаграждением. Основные 

подходы и алгоритмы: 

Для поставленных задач используется два варианта обучения: с 

учителем и без учителя. Для обучения нейронной сети, классифицирующей 
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дефекты печатного узла, целесообразно рассматривать методы обучения с 

учителем и без учителя. Результаты сравнения этих методов представлены в 

таблице 5. 

Таблица 5 – Результаты сравнения методов обучения: с учителем и без учителя 

Что 

сравнивается: 

Метод обучения с 

учителем 
Метод обучения без учителя 

Данные Размеченные (X, y) Неразмеченные (X) 

Цель 
Предсказание 

метки/значения 
Поиск скрытых структур 

Задачи 
Классификация, 

регрессия 

Кластеризация, понижение 

размерности 

Сложность 

оценки 

Объективная (есть с чем 

сравнить) 
Субъективная (нет эталона) 

Пример Прогноз цены акций Сегментация пользователей 

 

Исходя из результатов сравнения методов, приведённых в таблице 6, для 

обучения искусственной нейронной сети выбрано обучение с учителем. Это 

позволит обеспечить устойчивый классификатор на основе заранее 

подготовленных данных по возможным дефектам компонентов печатного узла 

и масштабировать модель для перехода на более сложные варианты печатных 

узлов.  
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2.2 Выбор и подготовка данных для обучения классифицирующей 

нейронной сети 

2.2.1 Оценка возможного количества неисправностей в печатном узле 

Для определения объема обучающей выборки диагностирующей 

искусственной нейронной сети необходимо оценить число возможных 

дефектов печатного узла N. Неисправности, связанные с установкой 

электронных компонентов типов и номинальных значений отличных от тех, 

что указаны в спецификации – перепутаны номиналы. Это более характерно 

для ручного процесса монтажа печатных узлов [47–48]. 

Обрывы и замыкания – также достаточно часто встречающиеся 

неисправности в печатных узлах. Неисправности в виде обрывов и замыканий 

могут возникать, как и с дорожками печатной платы, так и в электронных 

компонентах.  

На печатном узле может возникнуть как одиночная неисправность, так 

и несколько разных неисправностей одновременно: две, три и т.д. Ввиду того, 

что одновременное возникновение одновременно нескольких неисправностей 

у одного печатного узла имеет достаточно низкую вероятность, то имеет 

смысл ограничиться в рассматриваемой модели одиночными и двойными 

неисправностями. 

Ограничения используемые в приведённой ниже модели оценки 

количества неисправностей в печатном узле:  

– рассматриваются неисправности печатного узла на этапе 

промежуточного контроля; 

– возникновение любой неисправности приводит к 

неработоспособности всего печатного узла; 

– в модели учитывается только количество одиночных 

неисправностей и сочетаний двух неисправностей;  

– неисправности, связанные с замыканиями и обрывами 

проводников на печатной плате в модели не учитываются; 
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– на печатном узле отсутствуют неаутентичные компоненты, т.е. 

некачественные, фальсифицированные, контрафактные электронные 

компоненты. 

Порядок расчёта количества неисправностей ПУ по предложенной 

модели оценки количества неисправностей в печатном узле приведён на 

рисунке 20. 
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Рисунок 20 – Порядок расчёта количества неисправностей в печатном узле 

 

Рассмотрим приведённый на рисунке 20 порядок расчёта более детально 

на примере печатного узла, удовлетворяющего перечисленным выше 

ограничениям.  

Шаг 1. Анализ печатного узла – выявление возможных групп 

неисправностей. 

Возможные группы неисправностей (таблицы 6, 7): неправильная 

установка электронного компонента (полярность), обрыв, замыкание, 

перепутаны номиналы. 

Шаг 2. Выявление числа одиночных неисправностей и размещение их 

по группам. Число одиночных неисправностей зависит не только количества 
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возможных групп неисправностей, но и от количества компонентов, 

используемых для производства печатного узла и их типа (таблицы 6 и 7).  

Шаг 3. Расчёт количества одиночных неисправностей. Пример расчета 

количества одиночных неисправностей в случае ручного монтажа печатного 

узла приведён в таблице 6. Пример расчета количества одиночных 

неисправностей в случае автоматического монтажа печатного узла приведён в 

таблице 7. В случае, если при изготовлении печатного узла используется 

комбинированный монтаж, то для проведения расчета используются данные 

из обеих таблиц – таблица 6 для компонентов, установленных вручную, и 

таблица 7 для компонентов, смонтированных автоматизированным методом. 

Итоговое количество одиночных неисправностей обеих таблиц суммируется. 

Пусть есть N неисправностей, разбитых на G независимых групп. 

Обозначим количество неисправностей в каждой группе как n1, n2, ..., nG, тогда 

количество одиночных неисправностей печатного узла:  

N = n1 + n2 + ... + nG.. (20) 

Если группы независимы, то две неисправности могут быть [9]: 

–  из одной группы, если в группе хотя бы 2 неисправности; 

–  из разных групп. 

Шаг 4. Расчёт количества сочетаний внутри групп неисправностей: 

1 21
( ( ))i

G n

i
C

=
=  . (21) 

Шаг 5. Расчёт количества сочетаний между группами неисправностей: 

2 1( )i j G i jС n n  =  . (22) 

Шаг 6. Нахождение общего количества одиночных и двойных 

неисправностей: 

1 2C N C C= + + . (23) 

Пример оценки количества возможных неисправностей печатного узла 

для исследуемого печатного узла импульсного источника питания. 
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Таблица 6 – Расчет количества одиночных неисправностей в случае ручного 

монтажа печатных узлов 

Типы 

компонентов 

Количество 

компонентов 

в группе, 

шт. 

Группы неисправностей 

Группа 1 Группа 2 Группа 3 Группа 4 

Неправильная 

установка 

(полярность) 

Обрыв Замыкание Перепутаны 

номиналы 

Резисторы 12 0 1 0 1 

Конденсаторы 

неполярные 

6 0 1 1 1 

Конденсаторы 

полярные 

2 1 0 0 1 

Катушки 

индуктивности 

1 0 1 1 0 

Предохранитель 1 0 1 0 0 

Диод  2 1 1 0 0 

Стабилитрон 1 1 1 1 1 

Транзистор I 0 0 0 1 0 

Транзистор II 1 0 0 0 0 

Светодиод 1 1 0 0 0 

Микросхема 1 1 1 1 0 

Разъем 

неполярный 

2 0 1 0 0 

Количество неисправностей в 

группе: 

n1 = 7 n2 = 26 n3 = 9 n4 = 21 

 

Из примера (таблица 6): группа 1: n1 = 7 неисправностей. Группа 2: n2 = 

26 неисправностей.  Группа 3: n3 = 9 неисправностей.  Группа 4: n4 = 21 

неисправность. Тогда общее число одиночных неисправностей: N = n1 + n2 + 

n3 + n4 = 7 + 26 + 9 + 21 = 63 неисправности. 
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Таблица 7 – Расчет количества одиночных неисправностей в случае 

автоматического монтажа печатных узлов 

Типы 

компонентов 

 

Количество 

компонентов 

в группе, шт. 

Группы неисправностей 

Группа 1 

 

Группа 

2 

Группа 3 Группа 4 

 

Неправильная 

установка 

(полярность) 

Обрыв Замыкание Перепутаны 

номиналы 

Резисторы 12 0 0 0 1 

Конденсаторы 

неполярные 

6 0 0 0 1 

 

Конденсаторы 

полярные 

2 1 1 1 1 

Катушки 

индуктивности 

1 0 0 0 1 

Предохранитель 1 0 0 0 1 

Диод  2 0 1 1 0 

Транзистор II 1 1 1 1 0 

Светодиод 1 1 1 1 0 

Микросхема 1 0 0 0 0 

Разъем 

неполярный 

2 0 1 1 0 

Количество неисправностей в 

группе: 

n1 = 3 n2 = 9 n3 = 9 n4 = 22 

 

Способы выбора двух неисправностей. Обе неисправности из одной 

группы неисправностей (если в группе ≥ 2 неисправностей). Сочетания внутри 

групп неисправностей (расчёт выполнен для таблицы 7): 

группа 1 𝐶7
2 :   (7

2
) =

7×6

2
= 21; 

группа 2 𝐶26
2 :  (26

2
) =

26×25

2
= 325; 

группа 3 𝐶9
2:   (9

2
) =

9×8

2
= 36; 
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группа 4 𝐶21
2 :  (21

2
) =

21×20

2
= 210. 

Итого внутри групп: С1 = 21 + 325 + 36 + 210 = 592 неисправности. 

Неисправности из разных групп неисправностей. Сочетания между 

группами неисправностей (расчёт выполнен для таблицы 7): 

группы 1 и 2:  7 × 26 = 182; 

группы 1 и 3:  7 × 9 = 63; 

группы 1 и 4:  7 × 21 = 147; 

группы 2 и 3:  26 × 9 = 234; 

группы 2 и 4: 26 × 21 = 546; 

группы 3 и 4: 9 × 21 = 189. 

Итого между группами: С2 = 182 + 63 + 147 + 234 + 546 + 189 = 1361 

неисправность. 

Общее число сочетаний: 592 (внутри групп неисправностей) + 1361 

(между группами неисправностей) = 1953 неисправности. Общее количество 

одиночных и двойных неисправностей С = 62 + 1953 = 2015 неисправностей, 

однако большинство из них имеют исчезающе малую вероятность, поэтому 

для обучения потребуется выделить самые часто встречающиеся 

неисправности [49]. 

В работе рассматривается мультиклассовая классификация. Для 

решения этой задачи целесообразно использовать полносвязную нейронную 

сеть. Она обеспечит высокую точность распознавания множества классов с 

устойчивость к переобучению и потерям. Для обучения нейронной сети, в 

данном случае, рассматривается обучение с учителем [50–51]. При таком 

методе нейронная сеть получает набор данных признаков (значения 

температур компонентов, полученных при проведении контроля) и ответ в 

виде целевого параметра – номера класса дефекта [52–53]. 

В качестве входных данных используется матрица 8х8 значений, 

которая в развернутом виде представляет собой вектор из 64 атрибутов 

температурных показателей, полученных с помощью тепловизора. Для 
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получения матрицы печатный узел сегментируется [54–56] в соответствии с 

расположением компонентов (рис. 21). 

 

Рисунок 21 – Сегментация печатного узла импульсного источника питания 

 

Далее на основе ранее проведенной оценки были выделены основные 

часто встречающиеся дефекты исследуемого печатного узла, которые 

представляют собой классы (табл. 8) [57–58]. 

Все полученные значения температур при контроле печатного узла 

становятся отдельным признаком, описывающем состояние каждого сегмента 

печатного узла, которому соответствует компонент. 

Таблица 8 – Соответствие дефектов классам при обучении модели 

Номер класса 

неисправности 

(активный выход ИНС) 

Описание неисправности 

0 Отсутствие неисправности. 

1 Повреждение или перегорание предохранителя 

2 Перегорел диод в диодном мосте 

3 Перегорела микросхема драйвера 

4 Не запускается микросхема драйвера 

5 Не работает обратная связь через оптоизолятор (оптрон) 
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Продолжение таблицы 8  

6 Внутреннее замыкание проводников в дросселе 

7 Внутреннее замыкание в первичной обмотке трансформатора 

8 Обрыв в первичной обмотке трансформатора 

9 Внутреннее замыкание во вторичной обмотке трансформатора 

10 Обрыв во вторичной обмотке трансформатора 

11 Перегорание диода выпрямительного выходного 

12 Перегорание резистора нагрузочного 

13 Перегорание (внутреннее замыкание) стабилитрона 

14 Плохая величина ESR конденсатора выходного фильтра 

 

На основании этих данных формируются выборки: обучающая и 

тестовая [59]. В ходе проведения исследований температур печатного узла 

была сформирована следующая обучающая выборка, фрагмент которой 

представлен на рис. 22 [60]. 

 

Рисунок 22 – Фрагмент обучающей выборки  
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Эмпирическим путем были получены 90 наблюдений температурных 

показателей для печатного узла с разными типами неисправностей. Эти 

данные составляют матрицу Х∈R (90х64). Последний столбец является 

целевым или исследуемым параметром – классом дефекта. Методы обучения 

Далее данные необходимо нормализуются. Нормализация данных – это 

процесс преобразования числовых признаков в единый масштаб (диапазон 

значений) без искажения их распределения и значимости. Она применяется 

для приведения данных к сопоставимому виду, что улучшает работу 

алгоритмов машинного обучения. Приведение всех данных к единичной 

дисперсии осуществляется по формуле: 

𝑋𝑛𝑜𝑟𝑚
𝑖 =

𝑋𝑖−𝜇

𝜎
,  

(24) 

где: xi – текущее значение параметра, 𝜇 – среднее значение признаков, 𝜎 – 

стандартное отклонение признаков. 

 

2.3 Построение архитектуры искусственной нейронной сети для 

классификации дефектов печатного узла 

Современные электронные устройства требуют высокоточной и 

надежной диагностики печатных узлов, включая контроль качества монтажа, 

выявление дефектов пайки, проверку целостности соединений и обнаружение 

механических повреждений. Традиционные методы визуального и 

автоматизированного контроля не всегда обеспечивают достаточную 

точность, особенно при работе с миниатюрными компонентами и сложными 

многослойными платами. Искусственные нейронные сети (ИНС), благодаря 

способности анализировать большие объемы данных и выявлять скрытые 

закономерности, открывают новые возможности для автоматизации этого 

процесса [61].   

Архитектура нейронной сети определяет её структуру, организацию 

слоёв и способ взаимодействия нейронов. Она включает в себя количество 
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слоёв (входной, скрытые, выходной), типы этих слоёв (сверточные, 

рекуррентные, трансформеры), а также способ передачи данных между 

ними. Различные архитектуры, такие как: CNN (сверточные), RNN 

(рекуррентные), трансформеры предназначены для решения конкретных 

задач, например, для обработки изображений или последовательных данных, 

таких как текст [62–63]. 

Основные компоненты архитектуры: 

Нейроны – взаимосвязанные узлы, обрабатывающие и передающие 

информацию. 

Слои – нейроны образуют слои, и информация передаётся от одного слоя 

к другому. 

Входной слой – получает исходные данные. 

Скрытые слои промежуточные слои, выполняющие основную 

обработку. 

Выходной слой – выдаёт результат работы сети. 

Связи – соединения между нейронами, по которым передаются сигналы. 

Функции активации – определяют выходной сигнал нейрона на основе 

входных данных.  

Нейронные сети делятся на типы по своей архитектуре и функциям, 

включая прямого распространения для линейных задач, сверточные (CNN) для 

изображений и видео, рекуррентные (RNN) для последовательных данных 

(текст, речь), а также более сложные глубокие сети (DNN), графовые сети 

(GNN) для сетей и химических структур и генеративно-состязательные (GAN) 

для создания нового контента. Применение нейросетей охватывает 

компьютерное зрение, обработку естественного языка, медицинскую 

диагностику, финансовый анализ, рекомендательные системы и беспилотные 

автомобили [64–65].  

Основные виды нейронных сетей: 
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Нейронные сети прямого распространения Feedforward Neural Networks, 

FFNN. Информация движется только в одном направлении, от входного слоя 

через скрытые слои к выходному.  

 Сверточные нейронные сети Convolutional Neural Networks, CNN: 

используют сверточные слои для обработки данных с пространственной 

структурой, таких как изображения.  

Рекуррентные нейронные сети Recurrent Neural Networks, RNN. Имеют 

циклы обратной связи, позволяющие передавать информацию назад и вперед, 

что делает их эффективными для работы с последовательными данными.   

Глубокие нейронные сети Deep Neural Networks, DNN. Сети с большим 

количеством скрытых слоев, которые способны учиться на разных уровнях 

абстракции.  

Графовые нейронные сети Graph Neural Networks, GNN. 

Специализированные сети для работы с данными, представленными в виде 

графов. Их используют для анализа социальных сетей, прогнозирование 

химических соединений, логистика.  

Генеративно-состязательные сети Generative Adversarial Networks, GAN. 

Состоят из двух сетей (генератора и дискриминатора), которые обучаются в 

соревновании друг с другом.  

Для классификации дефектов печатных узлов целесообразно 

использовать полносвязные нейронные сети прямого распространения [66]. В 

такой нейронной сети каждый нейрон предыдущего слоя связан с каждым 

нейроном следующего, что позволяет построить достаточно простую модель 

классификации дефектов печатного узла [67]. 

Стандартная архитектура включает: 

–  входной слой: количество нейронов входных данных; 

– скрытые слои: последовательность полносвязных слоёв с 

нелинейными функциями активации; 

–  выходной слой: количество нейронов равно числу классов K с 

функцией активации softmax [68–70]. 
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В общем виде структура ИНС для контроля и диагностики печатных 

узлов выглядит так, как представлено на рисунке 23. 

 

Рисунок 23 – Структура искусственной нейронной сети 

 

Входной слой нейронной сети – шлюз, который подготавливает и 

передает исходные данные в вычислительный граф нейронной сети [71]. Его 

основные функции: 

–  структурный интерфейс, который фиксирует размерность входных 

данных, каждый нейрон в этом слое соответствует одному признаку набора 

данных; 

–  распределитель данных, который не производит вычислений в 

традиционном смысле (взвешенная сумма + функция активации), его задача – 

принять входной вектор и передать каждое его значение на соответствующий 

нейрон первого скрытого слоя; 

–  точка входа для предобработки, в которой может использоваться такая 

техника предобработки данных, такие как нормализация.  

Предположим, у нас есть один объект (наблюдение) из обучающей 

выборки, представленный в виде вектора-строки: 

x = [x₁, x₂, x₃, ..., xₙ], (25) 

где n – количество признаков. 
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Входной слой представляет этот вектор. Он состоит ровно из n узлов. 

Каждый узел передает свое значение (x₁, x₂, ...) на каждый нейрон следующего 

(первого скрытого) слоя. Это и есть принцип "полносвязности". 

Математически входной слой можно обозначить как 

вектор a⁽⁰⁾ (активации нулевого слоя): 

a⁽⁰⁾ =х. (26) 

Это означает, что выходом входного слоя является сам входной вектор. 

Далее этот вектор a⁽⁰⁾ поступает на первый скрытый слой. Хотя сам входной 

слой не имеет весов и смещений, именно с него начинаются все вычисления. 

Первый скрытый слой имеет: 

–  матрицу весов W⁽¹⁾ размерности [m, n], где: n – количество нейронов 

во входном слое (количество признаков), m – количество нейронов в первом 

скрытом слое. 

–  вектор смещений b⁽¹⁾ размерности [m, 1]. 

Входные данные для первого скрытого слоя вычисляются по формуле: 

z⁽¹⁾ = W⁽¹⁾ ⋅ a⁽⁰⁾ + b⁽¹⁾. (27) 

Что можно раскрыть как: 

z⁽¹⁾₁=w⁽¹⁾₁₁∙x₁+w⁽¹⁾₁₂∙x₂+...+w⁽¹⁾₁ₙ∙xₙ+b⁽¹⁾₁ 

z⁽¹⁾₂=w⁽¹⁾₂₁∙x₁+w⁽¹⁾₂₂∙x₂+...+w⁽¹⁾₂ₙ∙xₙ+b⁽¹⁾₂ 

... 

z⁽¹⁾ₘ = w⁽¹⁾ₘ₁∙x₁ + w⁽¹⁾ₘ₂∙x₂ + ... + w⁽¹⁾ₘₙ∙xₙ + b⁽¹⁾ₘ. 

 

(28) 

Затем к вектору z⁽¹⁾ применяется функция активации g чтобы получить 

активации первого слоя: 

a⁽¹⁾ = g(z⁽¹⁾). (29) 

Для одного объекта – это вектор формы (n), где n – число признаков. 

Современные фреймворки работают с данными в виде небольших партий.  Для 

порционного набора данных объектов данные представляются в виде 

матрицы размерности (batchsize x n). batchsize – количество данных в 

порционном наборе, n – количество признаков, соответствующее количеству 

нейронов во входном слое [72].  
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Скрытый слой – это любой слой нейронной сети, находящийся между 

входным и выходным слоями. Рассмотрим один скрытый слой с m нейронами, 

который следует за входным слоем с n нейронами: 

Вход – вектор активаций предыдущего слоя (для первого скрытого – это 

входные данные) a(in) = [a1, a2, ..., an]. 

Матрица весов W – матрица размерности [m x n]. Элемент Wij – это вес 

связи между j-м нейроном предыдущего слоя и i-м нейроном текущего 

скрытого слоя. 

Вектор смещений b – вектор размерности [m x 1]. Каждый нейрон имеет 

свое собственное смещение bi. 

Взвешенная сумма значений z для каждого нейрона в скрытом слое 

вычисляется линейная комбинация входов и весов плюс смещение: 

zi = (Wi1 · a1) + (Wi2 · a2) + ... + (Win · an) + bi. (30) 

В векторной форме для всего слоя:  

z = W · a(in) + b. (31) 

Функция активации g к взвешенной сумме z применяется нелинейная 

функция активации: 

ai=g(zi). (32) 

Выходом слоя является вектор активаций a(out) = g(z). 

Без нелинейной функции активации g вся нейронная сеть, независимо от 

количества слоев, выродилась бы в обычную линейную регрессию.  

Функции активации вводят нелинейность, что позволяет сети 

аппроксимировать сколь угодно сложные функции. Функция активации – 

нелинейное преобразование, которое применяется к результату взвешенной 

суммы (z). Именно она позволяет нейронной сети: 

–  аппроксимировать сколь угодно сложные нелинейные 

функции (согласно теореме универсальной аппроксимации); 

–  изучать сложные, нелинейные паттерны и взаимосвязи в данных; 

–  формировать сложные решающие поверхности для разделения 

классов. 



65 
 

Пороговая функция активации – функция, которая возвращает одно 

значение, если входные данные превышают заданный порог, и другое 

значение, если нет [73– 75]. Такая функция может иметь вид: 

          g(z) = {1, если z> = 0; 0, если z <0}.                                                       (33) 

Функция активации сигмоида – нелинейная функция активации 

нейронных сетей, которая преобразует любое входное значение в диапазон от 

0 до 1. Ее характерная "S"– образная форма (рис.24) делает ее полезной для 

задач бинарной классификации, где выход можно интерпретировать как 

вероятность:  

g(z) = 1 / (1 + e– z). (34) 

 

Рисунок 24 – График функции активации сигмоида 

 

 

Производная сигмоиды на значениях близких к экстремумам (когда 

значение |z| велико) близка к 0. При обратном распространении ошибки 

градиенты на этих участках почти не обновляют веса, что останавливает 

обучение глубоких сетей. 
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Функция активации гиперболический тангенс – нелинейная функция, 

которая преобразует входные значения в диапазон от – 1 до 1. Она является 

одной из наиболее распространенных функций в нейронных сетях, 

используется для задач классификации, регрессии и обработки изображений.  

g(z) = (ez – e (– z)) / (ez + e (– z)). (35) 

Эта функция активации центрирована вокруг нуля (среднее значение 

выходов ~0), что часто ускоряет сходимость градиентного спуска по 

сравнению с сигмоидой, однако все еще имеет затухание градиента на 

насыщенных участках (рис 25). 

 

Рисунок 25 – График функции активации гиперболический тангенс 

 

Функция активации ReLU вводит нелинейность в модель, что позволяет 

сети изучать сложные закономерности 

g(z) = max (0, z). (36) 

Данная функция активации уменьшает затухание градиента для 

положительных z производная постоянна и равна 1, что позволяет градиентам 



67 
 

свободно обновляться при обратном распространении. Вычислительно 

эффективна простая операция сравнения и выбора максимума (рис.26). 

 

Рисунок 26 – График функции активации ReLU 

 

Функция активации Leaky ReLU пропускает положительные значения 

без изменений, а для отрицательных значений возвращает небольшое 

линейное значение, умноженное на постоянный коэффициент. 

g(z) = {z, если z> = 0; αz, если z <0 }, (37) 

где α – маленькая константа (например, 0.01). Решает проблему затухания 

градиента ReLU. У отрицательных значений теперь есть небольшой, но 

ненулевой градиент (α), что позволяет нейронам восстановиться (рис.27). 
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Рисунок 27 – График функции активации Leaky ReLU 

 

Функция активации экспоненциальный линейный блок (ELU – 

Exponential Linear Unit) – является вариантом функции ReLU, которая 

позволяет нейронным сетям учиться быстрее и точнее. 

g(z) = {z, если z> = 0; α(ez – 1), если z <0. (38) 

Не смотря на решение проблему затухания градиента и отключения 

нейронов, данная функция активации требует более сложных вычислений и 

точной настройки гиперпараметров (рис. 28). 
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Рисунок 28 – График функции активации экспоненциальный линейный 

блок 

 

Функция активации Softmax – математическая функция, используемая в 

выходном слое нейронных сетей, особенно для задач многоклассовой 

классификации. Она преобразует вектор необработанных оценок в вектор 

вероятностей, где сумма всех значений равна 1, что позволяет 

интерпретировать результаты как распределение вероятностей 

принадлежности к каждому из классов.  

g(zi) = e(zi) / ∑ (j=1 to K) e(zj). (39) 

Понятие "скрытый слой" обобщается на более сложные архитектуры: 

Сверточные слои: используются в CNN для обработки изображений. 

Работают с локальными областями, имеют значительно меньше параметров, 

чем полносвязные. 

Рекуррентные слои (RNN, LSTM, GRU): используются для обработки 

последовательностей (текст, временные ряды). В данных слоях используется 
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обратная связь для передачи информации с выхода реккурентного слоя назад, 

на входы предыдущих слоёв. Благодаря этой обратной связи реккурентная 

сеть работает в режиме ассоциативной памяти, по принципу, по которому 

устроена работа человеческой памяти. 

Слои пакетной нормализации не являются вычислительными в 

традиционном смысле. Стабилизируют и ускоряют процесс обучения ИНС 

путем нормализации при нелинейных преобразованиях внутри партии 

данных. 

Dropout-слои – используются в регуляризационной технике, которая 

случайным образом обнуляет часть активаций во время обучения. L2-

регуляризация (или регуляризация Тихонова) – это использующийся в 

машинном обучении метод, который добавляет к функции потерь модели 

штраф, пропорциональный квадрату величины весов признака. Это помогает 

предотвратить переобучение, уменьшая веса и делая модель ИНС менее 

чувствительной к шуму в данных.  При L2-регуляризации к исходной функции 

потерь, например квадратичной ошибке в регрессии, добавляется 

дополнительный слагаемое, реализующее штраф, который пропорционален 

сумме квадратов всех весов модели, умноженной на коэффициент 

регуляризации λ.  Чтобы минимизировать штраф стремятся минимизировать 

ошибку модели на обучающих данных, что приводит к уменьшению весов. L2- 

регуляризация уменьшает все веса, но не обнуляет их полностью, в отличие от 

L1-регуляризации.  

 

2.4 Разработка математической модели для классификации дефектов 

печатных узлов 

Основные этапы обработки данных искусственной нейронной сети, 

использующихся в качестве входных, при реализации задачи классификации 

дефектов печатного узла: 

Нормализация данных [76]. Приведем все данные к единичной 

дисперсии: 
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X
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−
= . 

(40) 

Определение среднего значения jj-го признака по всей обучающей 

выборке: 

1

1 N

j ij

i

X
N


=

=  . 
 (41) 

Приведение разброса данных к единичной дисперсии. Стандартное 

отклонение jj-го признака: 

2

1

1
( )

N

j ij

i

X j
N

 
=

= − . 
 (42) 

Кодирование меток целевого параметра: 
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i
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i
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i
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I y

y

I y C

 =
 

=  
 = − 

. 

  (43) 

Encoder сопоставляет каждой текстовой метке целое число: yencod
(i)∈ {0, 

1..., C−1} yencod
(i) ∈ {0, 1..., C−1}; categorical преобразует это число в бинарный 

вектор длины C. Значение индикаторной функции I (⋅) равно 1, если условие в 

скобках истинно, и 0 если ложно. 

Далее, нормализованные данные подаются на первый слой нейронной 

сети: 

T

n n nz xW b= + ,  
(44) 

где: x – для первого слоя x=xnorm, zn – взвешенная сумма первого слоя, bn – 

нормализованный выход, T

nW – транспонированная матрица весов. 

Данные поступают в нейронную сеть небольшими группами, и еще раз 

нормализуются, это стабилизирует распределение входных значений для 

последующих слоев (сдвигает его к нулю и единичной дисперсии): 

2

n
n n n

a
bn


 

 

−
=  +

+
,  

(45) 



72 
 

где: γ₁, β₁ ∈ ℝ⁶⁴ – параметры масштаба и сдвига нормализованных данных, μ – 

скользящее среднее для батча (части выборки), σ² – скользящая дисперсия 

батча, ε ≈ 10⁻⁸ – малая константа для вычислительной устойчивости. 

Далее данные поступающие на слой ИНС проходят через нелинейное 

преобразование: 

ReLU(x)=max(0, x).  (46) 

Такая функция активации работает по пороговому признаку, что 

позволяет вносить нелинейность в преобразования, а также устранять 

проблемы затухающих градиентов, т.к. производная для x>0 равна 1, что 

помогает при обратном распространении данных при обучении ИНС. 

Значение производной функции преобразования 

d

dx
ReLu(x) = {

1, если х > 0
0, если х ≤ 0

. 
(47) 

Таким образом при нелинейном преобразовании данных между слоями, 

нейрон у которого производная ≤0 становится неактивным. Для 

предотвращения переобучения регуляризация данных не учитывает 

неактивные нейроны: 

nn nbn md =  , (48) 

где: dn – выход после применения отключения малых весов, m – бинарная 

маска по Бернулли. 

Выходной слой – количество нейронов равно числу классов K с 

функцией активации softmax. Функция Softmax – это математическая 

функция, преобразующая вектор вещественных чисел в вектор вероятностей, 

сумма которых равна единице. Она широко используется в машинном 

обучении, особенно в задачах многоклассовой классификации, чтобы 

представить выходные данные модели как вероятностное распределение по 

классам:  

softmax(z)=
𝑒𝑧3

∑ 𝑒𝑧315
𝑗=1

  .                                                      (49) 

Функция потерь L показывает, насколько сильно предсказанные 

моделью ИНС результаты отличаются от тех, которые использовались при её 
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обучении. Ее главная цель – количественно оценить ошибку модели, чтобы в 

процессе обучения минимизировать эту ошибку, тем самым улучшая точность 

предсказаний сети [77–78]. Для этого используются алгоритмы оптимизации, 

такие как градиентный спуск, которые обновляют веса сети в направлении, 

уменьшающем значение функции потерь: 

1 1

1
ˆlog( )

N C

ij ij

i j

L y y
N = =

= −   , 
(50) 

где: yij – истинная метка (0 или 1 из вектора), ˆijy – предсказанная вероятность 

вхождения данных в правильный класс, ˆlog( )ijy – перекрестная энтропия. Чем 

больше предсказанная вероятность ˆ
ijy  для правильного класса, тем меньше 

потери точности. Функция потерь стремится к 0, если вероятность вхождения 

в класс стремится к 1 [79]. 

L2-регуляризация уменьшает все веса, но не обнуляет их полностью [80] 

2 2

2 ( ( ))i i ii i
L y y t  = − +  , (51) 

где: y(ti) – предсказанное моделью значение i-го примера данных, λ – 

коэффициент регуляризации, αi – веса значений данных в модели на слое. Все 

преобразования в скрытых слоях рассчитываются с помощью автоматических 

функций распределения весов – оптимизаторов [81–83]. В оптимизаторе 

используется скользящее среднее по градиенту для обновления весов по 

последним полученным данным. Среднее градиентов в первый момент 

1 1 1(1 )t tm m g −= + − ,                                  (52) 

где: mₜ – оценка усредненного градиента параметров модели, β1 – параметр, 

учитывающий влияние прошлого градиента параметров модели, g – текущее 

значение градиента параметров модели. В последующие моменты 

рассчитывается среднее квадратов градиентов: 

2 1 2(1 )t tv v g −= + − , (53) 

где v – оценка нецентрированной дисперсии параметров модели, содержащая 

информацию о размахе градиентов для каждого параметра.  
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Последнее преобразование делит градиент на корень из его второго 

момента, что эффективно нормализует шаг обновления для каждого параметра 

1

ˆ

ˆ

t
t t

m

v
  


+ = −

+
 

(54) 

где θt – значение текущего параметра модели, α – скорость обучения модели, 

ε – малое число, которое используется для избежания ошибки деления на ноль. 

Скорость обучения — это небольшое положительное число в диапазоне, 

как правило, от 0,001 до 0,1 которое определяет шаг, с которым модель 

обновляет свои внутренние параметры – веса, в процессе обучения.  

Алгоритм обработки данных сети и обучающей выборки на каждой 

итерации обучения ИНС представлен на рисунке 29. 
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Рисунок 29 – Алгоритм обработки данных на каждой итерации 

обучения искусственной нейронной сети 

 

Начало обучения модели 

Инициация параметров 

W1:64x32=2048, b1: 32 

W2:32x15=480, b2: 15 
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Для каждого параметра θ 

mₜ = β₁mₜ₋₁ + (1-β₁)∇θ     

vₜ = β₂vₜ₋₁ + (1-β₂)∇θ²  

 

Коррекция смещения 

m̂ₜ = mₜ / (1-β₁ᵗ)            

v̂ₜ = vₜ / (1-β₂ᵗ) 

 

Обновление 

θ = θ - α m̂ₜ / (√v̂ₜ + ε) 
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Метрики качества 
Accuracy = (1/N) ∑ I[argmax(ŷ) = y] 

F1 = 2 × Precision × Recall / (Precision + 
Recall) 
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2.4 Оценка точности модели. Результаты классификации дефектов 

компонентов печатного узла 

Для оценки точности модели многоклассовой классификации 

используется ряд метрик, которые предоставляют более полную картину, чем 

просто общая точность (Accuracy). Ключевые методы включают матрицу 

ошибок и агрегированные метрики, такие как Precision, Recall и F1-score, а 

также логарифмическую функцию потерь (Log-loss) [84–85]. 

Матрица ошибок представляет собой квадратную матрицу размерности 

K×K, где K – количество классов. Элемент Cᵢⱼ матрицы указывает количество 

экземпляров класса i, отнесенных к классу j. Диагональные элементы Cᵢᵢ 

отражают количество верно классифицированных экземпляров каждого 

класса. Внедиагональные элементы Cᵢⱼ (где i ≠ j) показывают ошибочные 

классификации, что позволяет анализировать характер ошибок модели. 

Анализ внедиагональных элементов часто выявляет систематические ошибки 

классификации между семантически близкими классами. Матрица ошибок 

служит основой для вычисления всех производных метрик и обеспечивает 

детальную информацию о распределении ошибок классификации. Ключевые 

компоненты матрицы ошибок: 

True Positives (TP) для класса k: объекты класса k, правильно 

предсказанные как класс k. 

False Positives (FP) для класса k: объекты других классов, ошибочно 

предсказанные как класс k. 

False Negatives (FN) для класса k: объекты класса k, ошибочно 

предсказанные как другие классы. 

True Negatives (TN) для класса k: объекты других классов, не 

предсказанные как класс k. 

Пусть y = {y₁, y₂, ..., yₙ} – истинные метки. 

Пусть ŷ = {ŷ₁, ŷ₂, ..., ŷₙ} – предсказанные метки. 

Тогда Cᵢⱼ = | {k | yₖ = i и ŷₖ = j} | для i,j ∈ {1,2,...,K}. 

TPₖ = Cₖₖ (диагональный элемент матрицы). 
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FPₖ = Σᵢ Cᵢₖ – TPₖ (сумма по столбцу k минус диагональный элемент). 

FNₖ = Σⱼ Cₖⱼ – TPₖ (сумма по строке k минус диагональный элемент). 

TNₖ = ΣᵢΣⱼ Cᵢⱼ – TPₖ – FPₖ – FNₖ (общее количество минус три 

предыдущие) [86]. 

Матрица ошибок, построенная по результатам проведенной 

классификации дефектов печатного узла (рис.30). 

Рисунок 30 – Матрица ошибок классификации 

 

Из полученной матрицы видно, что все значения классов кроме двух 

находятся на диагонали. Это говорит о наличии двух ошибок – неверно 

предсказанных 1 и 8 классе дефектов.  

Accuracy (точность) – показывает, сколько правильных предсказаний 

сделала модель относительно общего числа предсказаний. Данная метрика 
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чувствительна к дисбалансу классов, поэтому оценка модели не может 

строиться исключительно на оценке точности accuracy: 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
. (55) 

Данная метрика может быть применима для одного из методов оценки 

модели, т.к. классы в обучающей и тестовой выборке заданы сбалансированно. 

Графики accuracy (рис.31) отображают изменение точности модели в процессе 

обучения и валидации. Они позволяет анализировать: 

Сходимость обучения – как модель достигает оптимальной 

производительности. 

Переобучение (overfitting) – расхождение между training и validation 

accuracy. 

Недообучение (underfitting) – низкие значения accuracy на обоих 

наборах. 

Стабильность обучения – колебания метрики в процессе обучения [87]. 

 

Рисунок 31 – Графики точности модели на обучении и валидации 

 

Precision (точность) – метрика точности классификации. Высокое 

значение метрики Precision означает, что, когда модель присваивает объекту 

определенный класс, соответствует высокой степени уверенности в этом 
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предсказании. Это особенно важно в ситуациях, где ложные предсказания 

вхождения в класс имеют высокую значимость.  

Pr
TP

ecision
TP TF

=
+

. (56) 

Recall (полнота) – доля истинно положительных результатов. Высокое 

значение метрики Recall означает, что модель хорошо находит все объекты, 

принадлежащие классу, даже если при этом она иногда ошибается и 

приписывает этому классу объекты из других классов. 

Re
TP

call
TP FN

=
+

. (57) 

Метрика, объединяющая и балансирующая полноту и точность работы 

модели – F-мера (F-score). F-мера представляет собой гармоническое среднее 

между точностью и полнотой.  Возможно рассчитать F-меру придав 

различный вес точности и полноте, если осознанно отдается приоритет одной 

из этих метрик при разработке алгоритма. 

2 Pr Re
( 1)

Pr Re

ecision call
F

ecision call



= +

+
, (58) 

где β принимает значения в диапазоне 0 <β <1. Если необходимо отдать 

приоритет точности, а при β> 1 приоритет отдается полноте. При β = 1 

формула сводится к предыдущей и результатом будет являться 

сбалансированная F-мера. 

Метрики по всем классам усредняются несколькими способами, и 

каждый способ дает разную перспективу. 

Макро-усреднение (Macro Average). Вычисляются метрики Precision, 

Recall, F1 для каждого класса независимо, затем находится их среднее 

арифметическое. Формула для нахождения F1 Macro: 

1 21 1 ... 1
1 class class classN
macro

F F F
F

N

+ + +
= , (59) 

где N – общее количество классов. Каждый класс вносит равный вклад в 

итоговую метрику, независимо от своего размера. Это необходимо чтобы 

модель одинаково хорошо предсказывала и часто, и редко встречающиеся 

классы [88]. 
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 Взвешенное усреднение – среднее арифметическое всех 

данных взвешивается по количеству объектов, вошедших в каждый класс. 

Формула для F1 Weighted:  

1 11 ... 1
1 Class Class ClassN ClassN
Weighted

Support

F Support F Support
F

Total

+ +
= ,  

(60) 

где Support – это количество реальных значений данных каждого класса в 

выборке. 

Интерпретация результатов учитывает неравномерность распределения 

классов. Классы с большим количеством примеров влияют на метрику F1 

сильнее. Используется, когда важна общая производительность на всей 

выборке тестовых данных. Зависимость величины метрики F1-score от эпохи 

обучения ИНС приведена на рисунке 32. 

 

Рисунок 32 – Зависимость величины метрики F1-score от эпохи 

обучения ИНС 

 

 Микро-усреднение. Сначала отдельно суммируются все TP, FP, FN по 

всем классам, и уже для этих сумм вычисляется единая метрика. 
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1 2 ...global NTP TP TP TP= + + +  . 

1 2 ...global NFP FP FP FP= + + +  . 

1 2 ...global NFN FN FN FN= + + +  . 

Pr
global

micro

global global

TP
ecision

TP FP
=

+
 . 

Re
global

micro

global global

TP
call

TP FN
=

+
 . 

Pr Re
1 2

Pr Re

micro micro
micro

micro micro

ecision call
F

ecision call


=

+
. 

 

 

 

 

 

 

 

 

(61) 

Информация для сравнения метрик и оценки работы модели 

классификации дефектов исследуемого печатного узла с помощью ПАК, 

реализующего тепловизионный метод неразрушающего контроля приведена 

на рис.33 

 

Рисунок 33 – Сравнение метрик точности модели классификации 
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При работе диагностирующего ПАК возможны случаи, когда дефекты 

распознаются нечетко, одновременно принадлежат двум или более классам 

неисправностей. Для решения этой проблемы необходимо отобразить 

подсказку для контролера, показывающую результат работы модели (рис. 34). 

 

Рисунок 34 – Вывод вероятностей вхождения в каждый класс 

 

Т.к. последний слой нейронной сети имеет выход вероятностной 

принадлежности дефекта к классу, контролер может, опираясь на подсказку, 

принимать окончательное диагностическое решение 

 

Выводы по главе 2 

Совершенствование неразрушающего метода тепловизионного 

контроля целесообразно в направлении использования нейронной сети, 

осуществляющий диагностику неисправностей печатных узлов. Проведенный 

сравнительный анализ показал, что для обучения искусственной нейронной 

сети лучше подходит обучение с учителем, так как позволяет обеспечить 

устойчивый классификатор на основе заранее подготовленных данных по 

возможным дефектам компонентов печатного узла и масштабировать модель 

для перехода на более сложные варианты печатных узлов. 

Объем обучающей выборки для искусственной нейронной сети 

диагностирующей неисправности зависит, в частности, от количества часто 

встречающихся дефектов. Проведённый анализ источников показал 

отсутствие моделей оценки количества возможных неисправностей печатных 

узлов, поэтому в главе разработана оригинальная модель, оценивающая 

возможное количество неисправностей в печатном узле, которое, по 

результатам приведенного расчета, даже для печатных узлов простых 

радиоэлектронных изделий может достигать нескольких тысяч.     
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Для классификации дефектов печатных узлов целесообразно 

использовать полносвязные нейронные сети прямого распространения. 

Стандартная архитектура включает: входной слой: количество нейронов 

входных данных термограммы; скрытые слои: последовательность 

полносвязных слоёв с нелинейными функциями активации; выходной слой: 

количество нейронов равно числу классов неисправностей. 

Разработанная в главе математическая модель нейронной сети, 

осуществляющей классификацию дефектов печатных узлов за счет работы 

оптимизатора с регуляризацией и нормализацией данных, имеет защиту от 

переобучения, что обеспечивает её стабильную работу. По результатам 

проведённой верификации точность работы модели составляет 98%. 
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Глава 3 Алгоритм оценки влияния перегрева компонентов на 

надежность печатного узла 

3.1 Анализ влияния температуры на деградационные свойства 

печатного узла 

Высокие и циклические изменения температуры негативно влияют на 

печатные узлы несколькими способами: 

Термомеханические напряжения. Медь, припой, текстолит, кремний, 

другие вещества и материалы, используемые при производстве печатных 

узлов, обладают разными коэффициентами теплового расширения (КТР). 

В процессе эксплуатации печатные узлы подвергаются циклическом 

нагреву-охлаждению, которые приводят к механическим напряжениям в их 

конструкции, вызванным различием величин КТР контактирующих друг с 

другом веществ и материалов. 

По мере эксплуатации ПУ усталость веществ и материалов 

накапливается, что впоследствии приводит к постепенному разрушению 

паяных соединений, металлизированных отверстий, печатной платы, корпусов 

электронных компонентов. 

Тепловое расширение и механические напряжения печатного узла. 

Композитный материал печатной платы, состоит из основы (чаще всего FR- 4 

с КТР ~14–18 ppm/°C) и медных проводников (КТР ~17 ppm/°C) [89–90]. 

Однако у компонентов, особенно в корпусах BGA и QFN, коэффициент 

теплового расширения (КТР) кремниевого кристалла составляет всего 2,6 

ppm/°C. Эта разница в КТР при циклическом изменении температуры 

приводит к возникновению значительных механических напряжений в зонах 

паяных соединений, вызывая их усталостное разрушение [91]. 

Ускорение химических и физических процессов старения. Повышенная 

температура ускоряет все химические реакции, в том числе процессы старения 

диэлектрических материалов, электролитов в конденсаторах и 

полупроводниковых структур. Это приводит к деградации характеристик 

компонентов и сокращению их срока службы. 
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Изменение электрических характеристик. При повышении температуры 

изменяется электропроводность проводников и полупроводников, что может 

привести к сбоям в работе схемы или выходу параметров компонентов и 

печатного узла за допустимые пределы. 

Снижение прочности материалов. Высокая температура может снижать 

температуру стеклования (Tg) базовых материалов печатной платы, что влияет 

на их физическую прочность и надежность.  

Печатный узел представляет собой сложную систему, состоящую из 

взаимосвязанных электронной и механической подсистем. Электрические 

соединения и материалы печатной платы играют не менее важную роль в 

обеспечении надежности, чем сами компоненты.  Температурные воздействия 

вызывают деградационные процессы на всех уровнях этой системы. 

Конструктивные особенности ПУ, влияющие на тепловой режим. 

Современные ПУ являются многослойными структурами, где слои 

диэлектрика и медной фольги чередуются. Тепло, выделяемое компонентами, 

распространяется не только вверх в окружающую среду, но и вглубь платы 

через термопереходные отверстия и внутренние слои. Неоптимальное 

проектирование системы переходных отверстий и медных тепловых 

полигонов создает локальные зоны перегрева, даже если сам компонент 

смонтирован корректно [92–94]. 

Деградация диэлектрических свойств материалов. С ростом 

температуры диэлектрическая проницаемость и тангенс угла диэлектрических 

потерь материала основания увеличиваются. Для низкочастотных схем это 

может быть некритично, но в высокоскоростных и высокочастотных цепях это 

приводит к значительным потерям сигнала, уменьшению полосы пропускания 

и искажению фронтов импульсов.   

Электромиграция в печатных проводниках более характерна для тонких 

пленок на кристалле, в печатных платах при высоких плотностях тока, 

особенно в цепях питания. Эффект электромиграции сильней проявляется при 

повышенных температурах. Он проявляется в истончении проводников в 
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местах с высокой плотностью тока, что со временем приводит к нарушению 

электрической проводимости данных участков проводников. Коррозия 

медных проводников. Повышенная температура ускоряет все химические 

реакции. В условиях даже незначительной остаточной влажности или 

загрязнений флюсом на поверхности платы высокая температура многократно 

ускоряет процессы окисления и коррозии медных проводников, особенно на 

краях контактных площадок, что ведет к увеличению переходного 

сопротивления, обрывам печатных проводников [95]. 

Процессы деградации веществ и материалов ПУ можно 

систематизировать по типам воздействия: 

Деградация паяных соединений и межсоединений. Наиболее уязвимыми 

элементами конструкции являются паяные соединения и медные проводники 

[96]. 

Образование и рост интерметаллических соединений. В зоне контакта 

оловянно-свинцового припоя с медной подложкой контактных площадок 

происходит диффузия атомов металлов. При повышенных температурах 

скорость этой диффузии резко возрастает, что приводит к формированию 

хрупких интерметаллических фаз, таких как Cu₆Sn₅ и Cu₃Sn. Рост этих слоев 

увеличивает механическое напряжение в зоне соединения и значительно 

снижает его ударную и вибрационную стойкость, делая его склонным к 

растрескиванию. 

Рекристаллизация и рост зерен в припое. При периодическом нагреве-

охлаждении в структуре припоя происходят процессы рекристаллизации.  

Мелкие зерна объединяются в более крупные, что изменяет 

механические свойства материала – он становится более хрупким. Этот 

процесс является основной причиной усталостного разрушения паяных 

соединений BGA-компонентов и других корпусов с малой жесткостью. 

Электромиграция в проводниках. В тонких медных проводниках и 

вметаллизации на кристаллах микросхем высокая температура совместно с 

высокой плотностью тока вызывает направленный перенос массы атомов 
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меди. Это приводит к образованию пустот в одних участках проводника и 

наростов – в других. Со временем пустоты приводят к обрыву проводника, а 

наросты – к коротким замыканиям между соседними проводниками [97–98]. 

В керамических конденсаторах высокие температуры ускоряют 

диффузию ионов кислорода в диэлектрике, что приводит к снижению его 

сопротивления и росту тока утечки. При экстремальных перегревах может 

произойти термическое растрескивание керамики из-за разницы 

коэффициентов теплового расширения электродов и диэлектрика. 

В электролитических конденсаторах нагрев вызывает испарение 

электролита через уплотнительные элементы, что приводит к необратимому 

снижению емкости и увеличению эквивалентного последовательного 

сопротивления (ESR). Одновременно с этим происходит деградация 

оксидного слоя на аноде, что снижает пробивное напряжение компонента [99]. 

Деградация полупроводниковых приборов. Помимо ранее описанных 

эффектов в p-n переходах, температура влияет и на другие аспекты работы 

полупроводников [100]. 

Поверхностные эффекты и загрязнения. На границе кремния и 

пассивирующего слоя из диоксида кремния могут находиться ионы 

загрязнений, например ионы натрия. Под воздействием высокой температуры 

и электрического поля эти ионы становятся более подвижными и мигрируют, 

создавая каналы утечки и нестабильно изменяя пороговое напряжение 

полевых транзисторов.  

Ток утечки через подложку. В сложных КМОП-структурах повышение 

температуры увеличивает токи утечки между изолированными областями на 

кристалле через кремниевую подложку. Этот паразитный ток приводит к росту 

статического энергопотребления и дополнительному саморазогреву кристалла 

микросхемы. 
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3.2 Зависимость протекания химической реакции от температуры 

Правило Вант-Гоффа – эмпирическое правило, которое гласит: при 

повышении температуры на каждые 10°𝐶 скорость большинства химических 

реакций увеличивается в 2−4 раза. Это правило является приближённым и 

лучше всего работает в небольших температурных интервалах, особенно для 

реакций в растворе при температурах, близких к комнатным. С повышением 

температуры увеличивается кинетическая энергия молекул, что приводит к 

большему числу столкновений и, как следствие, росту скорости реакции. 

Скорость реакции 𝑣 при температуре 𝑡 связана с температурным 

коэффициентом 𝛾 следующим уравнением:  

 
𝑣𝑡2

𝑣𝑡1
= 𝛾

𝑡2−𝑡1

10 , 
(62) 

где 𝑣𝑡2 и 𝑣𝑡1 – скорости реакции при температурах 𝑡2 и 𝑡1 соответственно, 𝛾 –

температурный коэффициент. 

Правило Вант-Гоффа является приближенным и применимо только в 

ограниченном интервале температур. Для более точных расчетов следует 

использовать уравнение Аррениуса. Чаще всего правило применяется для 

оценки влияния температуры на гомогенные элементарные реакции в 

растворе, а не для большинства реакций в газовой фазе.  

Другим фундаментальным правилом, описывающим скорость 

химических реакций от температуры, является уравнение Аррениуса, которое 

соотносит энергию активации и константу скорости k для химических 

реакций. В уравнении Аррениуса k =AE–EA/RT, R – идеальная газовая константа, 

которая имеет значение 8,314 Дж/моль·K, T – температура на шкале 

Кельвина, EA – энергия активации в Дж/моле, e – константа 2,7183,  A – 

константа, называемая частотным коэффициентом, которая связана с частотой 

столкновений и ориентацией реагирующих молекул. Уравнение Аррениуса 

можно использовать для вычисления энергии активации реакции на 

экспериментальных кинетических данных. Один из подходов к 

определению EA для реакции предполагает измерение k при двух или более 
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различных температурах. Аррениус предложил уравнение для описания 

экспериментальной температурной зависимости константы скорости 

химической реакции [101]: 

2

ln AEd k

dT RT
= ,   (63) 

это уравнение в интегральной форме имеет вид: 

ln ln AEk A
RT

= − . (64) 

или: 

/AE RTk Ae= . 
(65) 

где: k – константа скорости реакции, A – предэкспоненциальный множитель, 

EA – энергия активации, R – универсальная газовая постоянная, T – 

абсолютная температура [102]. При переходе к (64) и (65) предполагается, что 

энергия активации и предэкспоненциальный множитель A не зависят от 

температуры, но в исследуемом температурном интервале 

предэкспоненциальный множитель А может зависеть от температуры: 

/
( ) AE RTk A T e−= . 

(66) 

Так как EA – переменная имеющая размерность, для расчета tg(α) нужно 

брать не геометрические отрезки, а их размерные значения из 

экспериментальных данных.  На рисунке 35 представлен график зависимости 

логарифма константы скорости химической реакции от температуры.  
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Рисунок 35 – График зависимости логарифма константы скорости 

химической реакции от температуры 

 

A – постоянная интегрирования. Величину энергии активации EA и 

логарифм предэкспоненциального множителя A можно определить 

графически (тангенс угла наклона прямой к оси абсцисс и отрезок, отсекаемый 

прямой на оси ординат): 

AEtg
R

 = . (67) 

Поскольку химическое взаимодействие частиц связано с разрывом 

старых химических связей и образованием новых, считается, что всякая 

элементарная реакция проходит через образование некоторого неустойчивого 

промежуточного соединения, называемого активированным комплексом:  

А   ––>   K ––>   B. 

Образование активированного комплекса всегда требует затраты 

некоторого количества энергии, что вызвано, во-первых, отталкиванием 

электронных оболочек и атомных ядер при сближении частиц и, во-вторых, 

необходимостью построения определенной пространственной конфигурации 

атомов в активированном комплексе и перераспределения электронной 

lnk 

1/T 

lnA 

α 
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плотности. Таким образом, по пути из начального состояния в конечное 

система должна преодолеть своего рода энергетический барьер. Энергия 

активации реакции приближённо равна превышению средней энергии 

активированного комплекса над средним уровнем энергии реагентов. 

Очевидно, что если прямая реакция является экзотермической, то энергия 

активации обратной реакции Е'А выше, нежели энергия активации прямой 

реакции EA. Энергии активации прямой и обратной реакции связаны друг с 

другом через изменение внутренней энергии в ходе реакции (рис.36) [103].  

 

Рисунок 36 – График зависимости энергии активации в химической реакции 

 

Поскольку температура есть мера средней кинетической энергии частиц, 

повышение температуры приводит к увеличению доли частиц, энергия 

которых равна или больше энергии активации, что приводит к увеличению 

константы скорости реакции [104]. 

Зная энергию активации реакции и константу скорости при какой-либо 

температуре T1, по уравнению Аррениуса можно рассчитать величину 

константы скорости при любой температуре T2: 
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2

1 1 2

1 1
ln ( )Ak E

k R T T
= − . 

(68) 

Уравнение Аррениуса также может быть модифицировано для 

электронных изделий. При изменении уравнения целесообразно использовать 

постоянную Больцмана k вместо универсальной газовой постоянной R, потому 

что энергия активации определяется в электрон-вольтах эВ, а постоянная 

Больцмана равна 8,617333262145e–5 эВ/К. Тогда, преобразованная формула 

коэффициента ускорения Аррениуса, применимая для электронных 

компонентов будет иметь вид: 

1 2

1 1
exp[( / ) ( )]A bk E k

T T
=  − , 

(69) 

где kb – постоянная Больцмана. 

Для электронных компонентов энергия активации составляет 0,1–0,9 эВ. 

Формула для коэффициента ускорения, основанная на модели Аррениуса, 

используется для прогнозирования срока службы изделий при повышенных 

температурах.  

Уравнение Эйринга – это уравнение в химической кинетике, которое 

связывает скорость химической реакции с температурой, энергией активации 

и энтропией. Оно описывает термически активируемые процессы и является 

более общим, чем уравнение Аррениуса, так как включает как энтальпийные, 

так и энтропийные факторы. Уравнение Эйринга используется для:  

–  определения термодинамических параметров активации (Δ𝐻‡ и Δ𝑆‡) 

на основе экспериментальных данных о скорости реакции при различных 

температурах. 

–  изучения механизмов реакций: знак и величина энтропии активации 

могут дать информацию об ассоциативном или диссоциативном характере 

переходного состояния. 

–  описания процессов переноса в жидкостях (например, вязкости), где 

перенос массы рассматривается как термически активированный процесс.  
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3.3 Оценка влияния температуры компонентов на надежность печатного 

узла импульсного источника питания 

В качестве исходных данных для дальнейших расчетов используются 

данные, полученные при тепловизионном контроле печатного узла. Для 

обработки и расчетов берется 8 термограмм: 1 термограмма исследуемого 

печатного узла без перегревов в качестве эталонной и 7 термограмм печатного 

узла с различными значениями перегревов компонентов. Расчет параметров 

надежности производится на срок службы печатного узла и входящих в состав 

компонентов равный 10 годам.  

При использовании математической модели оценки влияния перегрева 

компонентов печатного узла на надежность изделий радиоэлектроники 

вводятся следующие ограничения: 

–  печатный узел диагностируется на стадии производства и не имеет 

израсходованного ресурса; 

–  контроль печатного узла проводится в нормальных условиях, в 

противном случае необходимо использовать термокомпенсацию; 

–  компонент изделия радиоэлектроники считается греющимся при 

превышении его измеренной температуры эталонной температуры на 5 

и более °С.  

Каждой области термограммы соответствует какой-либо компонент 

печатного узла. 

В нормальных условиях, коэффициент ускорения равен единице, но при 

реальных измерениях тепловых параметров компонентов, наблюдаются 

отклонения от эталонных значений. Чем больше разница эталонной и 

реальной температур, тем больше значение коэффициента ускорения. На 

рисунке 37 приведен график распределения коэффициента ускорения для 

тестируемых печатных узлов.  
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Рисунок 37 – Распределение коэффициента ускорения для 

исследуемого печатного узла 

 

Для проверки сходимости расчета коэффициента ускорения проведем 

проверку обратной пропорциональности. Для экспоненциального ускорения: 

наработка до отказа ~ 1/k. Отношение наработки до отказа эталонной к 

наработке до отказа реальной должно равняться теоретическому значению 

коэффициента ускорения k. Рассчитанные данные представлены в таблице 9. 

Таблица 9 – Рассчитанные значения наработки до отказа от коэффициента 

ускорения 

Значение перегрева ΔT, 

°C 

Коэффициент 

ускорения k 

Значение наработки до отказа 

10 2 114,155 /57,078 = 2 

20 4 114,155 /28,539 = 4 

30 8 114,155 / 14,269 = 8 

40 16 114,155 / 7,135 = 16 
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В таблице 10 представлены данные по основным характеристикам 

компонентов исследуемого печатного узла импульсного источника питания, 

необходимым для дальнейших расчетов. 

Таблица 10 – Основные характеристики компонентов печатного узла 

импульсного источника питания 

Тип 

компонента 

Энергия 

активации Ea, 

эВ 

Срок службы 

по 

спецификации, 

лет 

Константа C Примечание 

Резистор 0,7 10 1,0 

Простые 

компоненты, 

стабильные 

Конденсатор 0,8 8 1,2 
Чувствительны к 

температуре 

Транзистор 0,65 12 1,1 

Полупроводниковые, 

средняя 

чувствительность 

 

В качестве показателя надежности рассматривается средняя наработка 

до отказа компонентов печатного узла. Модель основана на процессах 

деградации и старения материалов при увеличении температуры компонентов, 

которые являются одними из основных причин отказов в электронике. 

Надежность изделий радиоэлектроники уменьшается с увеличением рабочей 

температуры, так что указанный в спецификации к компонентам параметр 

средней наработки до отказа указан для нормальных условий окружающей 

среды. Наработка до отказа – наработка, накопленная от первого 

использования изделия или от его восстановления до отказа. Наработка до 

первого отказа – наработка, накопленная от первого использования изделия до 

его отказа. Наработка до первого отказа является частным случаем наработки 

до отказа [105]. 

Функция надежности 𝑅(𝑡) – вероятность того, что компонент 

проработает безотказно до момента времени 𝑡: 

( ) tR t e −= . 
(70) 
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Она показывает вероятность того, что случайная величина наработки на 

отказ будет больше или равна заданному времени 𝑡. Функция надежности 

зависит от времени, так как надежность со временем снижается из-за 

деградации материалов и веществ или других факторов. 

Функция распределения отказов 𝐹(𝑡) – вероятность того, что отказ 

произойдет до момента 𝑡: 

( ) 1 ( ) 1 tF t R t e −= − = − . (71) 

Она является неубывающей функцией находится в диапазоне от 0 до 1 и 

используется для анализа надежности систем и компонентов. В отличие от 

функции распределения, вероятность безотказности 𝑃(𝑡) показывает, что 

компонент будет работать без отказов в течение времени t.                                                     

Средняя наработка до отказа – математическое ожидание времени 

безотказной работы: 

0 0

1
( ) t

отказаТ R t dt e dt



 

−= = =  . 
   (72) 

Таким образом, средняя наработка до отказа равна площади, 

образованной кривой вероятности безотказной работы P(t) и осями координат. 

Из формулы коэффициента ускорения для компонентов с учетом 

температур (61) значение каждого i-го компонента: 

1 2

102
i iT T

ik

−

= . 

(73) 

Тогда средний коэффициент ускорения для компонента 𝑖 по двум 

измерениям: 

1
( )

1

m

ср i im

i

k k
=

=  . 
(74) 

Интенсивность отказов компонента 𝑖: 

                                  

.

1 1 2

1 1 1
exp ( )a

i теор i

b i i

E
k

L k T T
 

 
= = − 

 
. 

   (75) 



97 
 

где: L1 – номинальный срок службы компонента, 
.теор – теоретическое 

значение интенсивности отказов. 

Для печатного узла с последовательным соединением надежность 

системы компонентов будет определяться как: 

11

( ) ( ) exp( )
n n

sys i i

ii

R t R t t 
==

= = −  . 
   (76) 

Большинство печатных узлов, с точки зрения теории надежности, 

представляют собой систему с последовательной схемой замещения. 

Надежность подобной системы определяется самым ненадежным элементом, 

поэтому расчет ведется для компонентов, у которых реальное превышение 

рабочей температуры относительно эталонной превышает 5°C. 

 Тогда множество критических компонентов: 

    𝐶 = {𝑖: Δ𝑇𝑚𝑎𝑥
(𝑖)

> 5°𝐶}.      (77) 

Вероятность безотказной работы компонента: 

0

( ) ( ) ( )

t

R t P T t f x dx=  =   . 
(78) 

Интенсивность отказов компонента: 

0

( ) ( )
( ) lim

( )t

P t T t t T t f t
t

t R t


 →

  + 
= =


 . 

(79) 

Отказ каждого компонента может привести к отказу всего печатного 

узла. Исследуемый параметр надежности – наработка до отказа. 

Чувствительность надежности печатного узла к перегревам компонентов 

можно рассчитать как производную функции надежности по температуре: 

sys sys sys

sys

R R

T T





  
= 

    . 

(80) 

2
1 1

n n
sys i a

i

i i b i

E

T T k T

 


= =

  
= =  

   
   . (81) 

2
1

( )
n

sys a
sys i

i b i

R E
t R t

T k T


=

  
 = −       

  .  

 

(82) 
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На рисунке 38 показана зависимость средней наработки на отказ 

печатного узла от коэффициента ускорения при перегреве компонентов ΔT. 

На нем видно, что с ростом коэффициента ускорения, уменьшается значение 

наработки на отказ компонентов, а, следовательно, и надежности всего 

печатного узла. 

 

Рисунок 38 – Зависимость наработки на отказ печатного узла от 

коэффициента ускорения 

 

Окончательно общая формула для оценки влияния температуры 

компонентов на величину наработки на отказ печатного узла: 

1
1 1 2

1

1 1 1
exp( ( ))

отказаsys
n a

i
b i i

Т
E

L k T T=

=
 

− 
 


 , 

(83) 

где Тотказаsys – средняя наработка на отказ системы [106]. 

На рисунке 39 представлена карта перегрева областей исследуемого 

печатного узла.  
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Рисунок 39 – Тепловая карта исследуемого печатного узла 

На рисунке 40 – оценка величины наработки на отказ при значениях 

таких перегревов.  
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Рисунок 40 – Оценка возможной наработки на отказ компонентов 

печатного узла с учетом температуры перегрева 

 

В таблице 11 представлены сводные данные параметров надежности 

печатного узла от значений отклонений температур от идеальных значений, 

выявленных при тепловизионном контроле. 

Алгоритм оценки влияния перегрева компонентов на надежность 

представлен на рисунке 41. 
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Рисунок 41 – Алгоритм оценки влияния перегрева компонентов на 

надежность 

 

Алгоритм позволяет учесть реальное значение температуры компонента 

при оценке надежности печатного узла. 
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Таблица 11 – Сводная таблица показателей надежности при изменении 

температуры компонентов 

Исследуемый 

ПУ 

ΔT 

макс, 

°С 

Комп. с 

перегревом, 

шт. 

λ 

системы, 

×10⁻⁶ 

Наработка 

до отказа, 

часы 

Наработка 

до отказа, 

годы 

R, % 

на 10 

лет 

Снижение 

надежности, 

% 

Эталонный 

ПУ 
0 0 11,94 83,800 9,56 41,0 0 

ПУ 1 +10 6 17,91 55,846 6,37 20,8 -49,3 

ПУ 2 +8 4 17,87 55,960 6,39 20,9 -49,0 

ПУ 3 +7 1 12,64 79,114 9,03 38,5 -6,1 

ПУ 4 0 0 11,94 83,800 9,56 41,0 0 

ПУ 5 0 0 11,94 83,800 9,56 41,0 0 

ПУ 6 0 0 11,94 83,800 9,56 41,0 0 

ПУ 7 +11 2 14,72 67,935 7,75 31,4 -23,4 

 

Проведенный анализ печатных узлов подтверждает, что надежность 

радиоэлектронных изделий находится в прямой зависимости от температуры 

компонентов. Устройства, работающие с перегревом относительно эталонных 

условий, демонстрируют систематическое ухудшение ключевых показателей: 

рост интенсивности отказов, сокращение наработки на отказ и снижение 

вероятности безотказной работы на десятилетний срок. 

Критическое снижение надежности, достигающее 49%, наблюдается 

при перегреве на 8–10°C, что приводит к приблизительному двукратному 

увеличению интенсивности отказов. Даже незначительное превышение 

температуры на 7°C вызывает заметное ухудшение характеристик. При этом 

соблюдение теплового режима без перегревов компонентов гарантирует 

сохранение расчетной надежности печатных узлов. 

 



103 
 

Выводы по главе 3 

Перегрев электронных компонентов ускоряет все химические реакции, 

в том числе процессы старения диэлектрических материалов, электролитов в 

конденсаторах и полупроводниковых структур. Это приводит к деградации 

характеристик компонентов, сокращению их срока службы и, как следствие, к 

снижению надежности печатных узлов. Усовершенствованный 

тепловизионный метод даёт возможность оценивать надежность печатных 

узлов на основании анализа информации о перегревах установленных на них 

электронных компонентов. 

Для прогнозирования срока службы изделий при повышенных 

температурах может использоваться формула для коэффициента ускорения, 

основанная на модели Аррениуса, модифицированная для электронных 

изделий. При изменении уравнения целесообразно использовать постоянную 

Больцмана вместо универсальной газовой постоянной. 

Разработанный в работе алгоритм, основанный на модифицированной 

модели Аррениуса, позволяет повысить точность оценки надежности 

печатного узла на 5–7% по результатам измерений отличий реальных 

температур электронных компонентов от эталонных значений в заданных 

условиях работы. 
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Заключение 

В результате диссертационного исследования решена важная научно– 

практическая задача, направленная на интеграцию в информационную 

инфраструктуру предприятий отечественного электронного комплекса путем 

разработки и внедрения автоматизированного способа диагностирования 

тепловизионного метода контроля с применением аппаратно-программных 

средств и математических моделей обработки данных.  

В рамках выполнения поставленных задач были получены следующие 

результаты: 

1. Программно-аппаратный комплекс реализующий тепловизионный 

метода неразрушающего контроля, отличается от известных тем, что 

позволяет выявлять скрытые дефекты печатных узлов и обеспечивающий 

повышение оперативности проведения контроля и диагностики печатных 

узлов до 20%, в сравнении с ручным методом. человеческого фактора на 15% 

2. Математическая модель обработки термограммы отличается от 

известных тем, что позволяет повысить оперативность выявления дефектов 

печатного узла при тепловизионном контроле и диагностике до 40% и 

сократить количество ошибок диагностирования, связанных с влиянием 

человеческого фактора на 15%. 

3. Алгоритм оценки влияния перегрева компонентов печатного узла 

отличается от известных тем, что учитывает любые отличия температуры 

компонентов от эталонных значений и позволяет оценить изменение 

надежности всего печатного узла. Алгоритм оценки влияния перегрева 

компонентов позволяющий повысить точность оценки надежности печатного 

узла на 5–7 % за счет оценки влияния реальных температур компонентов. 
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Список сокращений и условных обозначений 

 

ААИ – автоматизированная акустическая инспекция 

АЛД – автоматизированная лазерная дефектоскопия 

АОИ – автоматическая оптическая инспекция 

АРИ – автоматическая рентгеновская инспекция 

ИК – инфракрасный диапазон 

ИНС – искусственная нейронная сеть 

КЗ – короткое замыкание 

ПАК – программно-аппаратный комплекс 

ПУ – печатный узел  

TP – True Positives, истинно положительный 

FP – False Positives, ложно положительный 

FN – False Negatives, ложно отрицательный 

TN – True Negatives, истинно отрицательный  
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Приложение А. Математическая модель обработки термограмм при 

тепловизионном контроле печатных узлов  

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, BatchNormalization 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.callbacks import EarlyStopping, 

ReduceLROnPlateau 

from tensorflow.keras.regularizers import l2 

data = pd.read_csv('train_data– 90шт.csv', header=None) 

X = data.iloc[:, :– 1].values   

y = data.iloc[:, – 1].values    

print(f"Форма X: {X.shape}")   

print(f"Форма y: {y.shape}")   

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

label_encoder = LabelEncoder() 

y_encoded = label_encoder.fit_transform(y) 

y_categorical = to_categorical(y_encoded) 

X_train, X_test, y_train, y_test = train_test_split( 

    X_scaled, y_categorical, test_size=0.2, random_state=42, 

stratify=y_encoded 

) 

model = Sequential([ 

    Dense(64, activation='relu', input_dim=X_train.shape[1], 

kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dropout(0.5), 

    Dense(32, activation='relu', kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dropout(0.4), 

    Dense(15, activation='relu', kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dense(y_categorical.shape[1], activation='softmax') 
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]) 

model.compile( 

    optimizer='adam', 

    loss='categorical_crossentropy', 

    metrics=['accuracy'] 

) 

callbacks = [ 

    EarlyStopping(monitor='val_loss', patience=20, 

restore_best_weights=True), 

    ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, 

min_lr=1e– 5) 

] 

history = model.fit( 

    X_train, y_train, 

    validation_data=(X_test, y_test), 

    epochs=150, 

    batch_size=8, 

    callbacks=callbacks, 

    verbose=1 

) 

 

loss, accuracy = model.evaluate(X_test, y_test, verbose=0) 

print(f"Точность на тестовых данных: {accuracy*100:.2f}%") 

plt.figure(figsize=(12, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Точность на обучающих 

данных') 

plt.plot(history.history['val_accuracy'], label='Точность на тестовых 

данных') 

plt.title('Точность модели классификации') 

plt.legend() 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Потери на обучающей выборке') 

plt.plot(history.history['val_loss'], label='Потери на тестовой 

выборке') 

plt.title('Функция потерь модели классификации') 

plt.legend() 

plt.show() 
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Приложение Б. Определение метрик модели классификации дефектов 

ПУ. 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler, LabelEncoder 

from sklearn.metrics import confusion_matrix, classification_report, 

f1_score 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, BatchNormalization 

from tensorflow.keras.utils import to_categorical 

from tensorflow.keras.callbacks import EarlyStopping, 

ReduceLROnPlateau, Callback 

from tensorflow.keras.regularizers import l2 

data = pd.read_csv('train_data– 90шт.csv', header=None) 

X = data.iloc[:, :– 1].values 

y = data.iloc[:, – 1].values 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 

label_encoder = LabelEncoder() 

y_encoded = label_encoder.fit_transform(y) 

y_categorical = to_categorical(y_encoded) 

X_train, X_test, y_train, y_test = train_test_split( 

    X_scaled, y_categorical, test_size=0.2, random_state=42, 

stratify=y_encoded 

) 

 

class F1ScoreCallback(Callback): 

    def __init__(self, X_val, y_val): 

        super().__init__() 

        self.X_val = X_val 

        self.y_val = y_val 

        self.val_f1_scores = [] 

        self.val_f1_macro = [] 

    def on_epoch_end(self, epoch, logs=None): 

        y_pred_probs = self.model.predict(self.X_val, verbose=0) 

        y_pred = np.argmax(y_pred_probs, axis=1) 
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        y_true = np.argmax(self.y_val, axis=1) 

        f1_scores = f1_score(y_true, y_pred, average=None, 

zero_division=0) 

        f1_macro = f1_score(y_true, y_pred, average='macro', 

zero_division=0) 

        self.val_f1_scores.append(f1_scores) 

        self.val_f1_macro.append(f1_macro) 

        print(f"Epoch {epoch+1} –  val_f1_macro: {f1_macro:.4f}") 

f1_callback = F1ScoreCallback(X_test, y_test) 

model = Sequential([ 

    Dense(64, activation='relu', input_dim=X_train.shape[1], 

kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dropout(0.5), 

    Dense(32, activation='relu', kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dropout(0.4), 

    Dense(15, activation='relu', kernel_regularizer=l2(0.01)), 

    BatchNormalization(), 

    Dense(y_categorical.shape[1], activation='softmax') 

]) 

model.compile( 

    optimizer='adam', 

    loss='categorical_crossentropy', 

    metrics=['accuracy'] 

) 

callbacks = [ 

    EarlyStopping(monitor='val_loss', patience=20, 

restore_best_weights=True), 

    ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, 

min_lr=1e– 5), 

    f1_callback 

] 

history = model.fit( 

    X_train, y_train, 

    validation_data=(X_test, y_test), 

    epochs=150, 

    batch_size=8, 

    callbacks=callbacks, 
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    verbose=1 

) 

plt.figure(figsize=(15, 10)) 

plt.subplot(2, 2, 1) 

plt.plot(history.history['accuracy'], label='Точность на обучающих 

данных') 

plt.plot(history.history['val_accuracy'], label='Точность на тестовых 

данных') 

plt.title('Точность модели') 

plt.xlabel('Эпоха') 

plt.ylabel('Точность') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.subplot(2, 2, 2) 

plt.plot(history.history['loss'], label='Потери на обучающей выборке') 

plt.plot(history.history['val_loss'], label='Потери на тестовой 

выборке') 

plt.title('Функция потерь') 

plt.xlabel('Эпоха') 

plt.ylabel('Потери') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.subplot(2, 2, 3) 

plt.plot(f1_callback.val_f1_macro, label='F1– score (macro)', 

color='red', linewidth=2) 

plt.title('F1– score (macro average) по эпохам') 

plt.xlabel('Эпоха') 

plt.ylabel('F1– score') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.subplot(2, 2, 4) 

val_f1_scores = np.array(f1_callback.val_f1_scores) 

for i in range(val_f1_scores.shape[1]): 

    plt.plot(val_f1_scores[:, i], label=f'Class 

{label_encoder.classes_[i]}', alpha=0.7) 

plt.title('F1– score по классам') 

plt.xlabel('Эпоха') 

plt.ylabel('F1– score') 

plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left') 
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plt.grid(True, alpha=0.3) 

 

plt.tight_layout() 

plt.show() 

plt.figure(figsize=(10, 6)) 

plt.plot(f1_callback.val_f1_macro, label='F1– score (macro)', 

color='red', linewidth=3, marker='o', markersize=4) 

plt.title('Динамика F1– score (macro average) по эпохам', fontsize=14) 

plt.xlabel('Эпоха', fontsize=12) 

plt.ylabel('F1– score', fontsize=12) 

plt.grid(True, alpha=0.3) 

plt.legend() 

plt.tight_layout() 

plt.show() 

final_f1_macro = f1_callback.val_f1_macro[– 1] 

print(f"\nФинальный F1– score (macro): {final_f1_macro:.4f}") 

y_pred_probs = model.predict(X_test) 

y_pred = np.argmax(y_pred_probs, axis=1) 

y_true = np.argmax(y_test, axis=1) 

print("\nClassification Report:") 

print(classification_report(y_true, y_pred, 

target_names=label_encoder.classes_.astype(str))) 

y_pred_probs = model.predict(X_test) 

y_pred = np.argmax(y_pred_probs, axis=1)   

y_true = np.argmax(y_test, axis=1) 

y_pred_labels = label_encoder.inverse_transform(y_pred) 

y_true_labels = label_encoder.inverse_transform(y_true) 

def plot_confusion_matrix(y_true, y_pred, classes): 

    """ 

    Функция для построения и визуализации матрицы ошибок 

    """ 

    cm = confusion_matrix(y_true, y_pred, labels=classes) 

    plt.figure(figsize=(12, 10)) 

    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', 

                xticklabels=classes, 

                yticklabels=classes) 

    plt.title('Матрица ошибок', fontsize=16, pad=20) 

    plt.xlabel('Предсказанные значения', fontsize=14) 

    plt.ylabel('Истинные значения', fontsize=14) 
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    plt.xticks(rotation=45) 

    plt.yticks(rotation=0) 

    plt.tight_layout() 

    plt.show() 

    return cm 

unique_classes = label_encoder.classes_ 

conf_matrix = plot_confusion_matrix(y_true_labels, y_pred_labels, 

unique_classes) 

print("\n" + "="*50) 

print("ДЕТАЛЬНАЯ СТАТИСТИКА КЛАССИФИКАЦИИ") 

print("="*50) 

print("\nClassification Report:") 

print(classification_report(y_true_labels, y_pred_labels, 

target_names=unique_classes.astype(str))) 

print("\nДополнительная информация:") 

print(f"Всего примеров в тестовой выборке: {len(y_true_labels)}") 

print(f"Правильно классифицировано: {np.sum(np.diag(conf_matrix))}") 

print(f"Общая точность: {np.sum(np.diag(conf_matrix)) / 

len(y_true_labels):.3f}") 

print("\nНаиболее частые ошибки:") 

error_count = 0 

for i in range(len(unique_classes)): 

    for j in range(len(unique_classes)): 

        if i != j and conf_matrix[i, j] > 0: 

            print(f"Класс '{unique_classes[i]}' ошибочно предсказан 

как '{unique_classes[j]}': {conf_matrix[i, j]} раз") 

            error_count += conf_matrix[i, j] 

print(f"\nВсего ошибок: {error_count}") 

callbacks = [ 

    EarlyStopping(monitor='val_loss', patience=20, 

restore_best_weights=True), 

    ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, 

min_lr=1e-5) 

] 

history = model.fit( 

    X_train, y_train, 

    validation_data=(X_test, y_test), 

    epochs=150, 

    batch_size=8, 
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    callbacks=callbacks, 

    verbose=1 

) 

loss, accuracy = model.evaluate(X_test, y_test, verbose=0) 

print(f"Точность на тестовых данных: {accuracy*100:.2f}%") 

plt.figure(figsize=(12, 5)) 

plt.subplot(1, 2, 1) 

plt.plot(history.history['accuracy'], label='Точность на обучающих 

данных') 

plt.plot(history.history['val_accuracy'], label='Точность на тестовых 

данных') 

plt.title('Точность модели классификации') 

plt.legend() 

plt.subplot(1, 2, 2) 

plt.plot(history.history['loss'], label='Потери на обучающей выборке') 

plt.plot(history.history['val_loss'], label='Потери на тестовой 

выборке') 

plt.title('Функция потерь модели классификации') 

plt.legend() 

plt.show() 

plt.subplot(2, 2, 1) 

plt.plot(history.history['accuracy'], label='Точность на обучающих 

данных') 

plt.plot(history.history['val_accuracy'], label='Точность на тестовых 

данных') 

plt.title('Точность модели') 

plt.xlabel('Эпоха') 

plt.ylabel('Точность') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.subplot(2, 2, 2) 

plt.plot(history.history['loss'], label='Потери на обучающей выборке') 

plt.plot(history.history['val_loss'], label='Потери на тестовой 

выборке') 

plt.title('Функция потерь') 

plt.xlabel('Эпоха') 

plt.ylabel('Потери') 

plt.legend() 

plt.subplot(3, 4, 1) 
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max_deviations = [results_df.iloc[i]['max_ΔT'] for i in 

range(len(results_df))] 

matrix_8x8 = np.array(max_deviations).reshape(8, 8) 

im = plt.imshow(matrix_8x8, cmap='RdYlBu_r', interpolation='nearest', 

vmin=0, vmax=15) 

plt.colorbar(im, label='Макс. отклонение температуры, (°C)') 

plt.title('') 

plt.xlabel('Колонка компонента') 

plt.ylabel('Строка компонента') 

for i in range(8): 

    for j in range(8): 

        color = "white" if matrix_8x8[i, j] > 7 else "black" 

        plt.text(j, i, f'{matrix_8x8[i, j]:.0f}', ha="center", 

va="center", 

                 color=color, fontweight='bold', fontsize=8) 

plt.subplot(3, 4, 2) 

remaining_lives = results_df['remaining_life_years'] 

plt.hist(remaining_lives, bins=12, alpha=0.7, color='skyblue', 

edgecolor='black') 

plt.axvline(remaining_lives.mean(), color='red', linestyle='--', 

           label=f'Среднее: {remaining_lives.mean():.1f} лет') 

plt.xlabel('Остаточный ресурс (лет)') 

plt.ylabel('Количество компонентов') 

plt.title('2. Распределение прогнозируемого ресурса') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.subplot(3, 4, 3) 

status_counts = results_df['status'].value_counts() 

colors = {'CRITICAL': '#ff4444', 'WARNING': '#ffaa00', 'NORMAL': 

'#44cc44'} 

plt.pie(status_counts.values, labels=status_counts.index, 

autopct='%1.1f%%', 

        colors=[colors[status] for status in status_counts.index], 

startangle=90) 
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Приложение В. Программная часть ПАК 

from tkinter import * 

import colorsys 

import serial 

import select 

import time 

root = Tk() 

root.title("iTDver02") 

root.geometry("340x600") 

main_menu = Menu() 

help_menu = Menu() 

help_menu.add_command(label="Help Me!") 

help_menu.add_separator() 

help_menu.add_command(label="No Exit") 

main_menu.add_cascade(label="Help", menu=help_menu) 

root.config(menu=main_menu) 

h=0.1 

v=1.0 

def rgb2hex(r,g,b): 

    return "#{:02x}{:02x}{:02x}".format(r,g,b) 

def main(): 

    # USB port for MCU 

    ser = serial.Serial(port="/dev/ttyUSB0",baudrate=9600) 

    # Clear serial I/O 

    ser.flush() 

    poll_usb = select.poll() 

    poll_usb.register(ser, select.POLLIN) 

    try: 

            # obtain data from device over USB 

            #print('Press CTR– C to terminate program.') 

            #print('Collecting data from device.') 

        realtemp=str() 

        while(1): 

            data_event = poll_usb.poll() 

            time.sleep(0.1) # allow time for buffer to fill up 

            data_read = ser.readline() 

            data_str = data_read.decode('utf– 8', 'ignore') 

            #print(f"Data Received: {data_str}") 

            position1 = data_str.find('[') 
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            if position1 != – 1: 

                #print("Символ '[' найден на позиции", position + 1) 

                realtemp = data_str.strip()   

            else: 

                realtemp = realtemp + ' ' + data_str.strip() 

                #print("Символ '[' не найден") 

            position2 = data_str.find(']') 

            if position2 != – 1: 

                #print("Символ ']' найден на позиции", position + 1) 

                fltout = 

realtemp.replace("[","").replace("]","'").replace("'","").split(',') 

                for i in range(64): 

                    fltout[i] = float(fltout[i]) 

                for rw in range(8): 

                    for cn in range(8): 

                        s=fltout[cn+rw*8]/70 

                        #print(fltout) 

                        a=colorsys.hsv_to_rgb(h,s,v) 

                        r=int(a[0]*255) 

                        g=int(a[1]*255) 

                        b=int(a[2]*255) 

                        hx=rgb2hex(r,g,b) 

                        lbl = Label(background=hx, height=1, width=4) 

                        lbl.update() 

                        lbl.grid(row=rw, column=cn, ipadx=5, ipady=7, 

padx=0, pady=0)    

            else: 

                print(" ") 

    except KeyboardInterrupt: 

        print('Keyboard interrupt occurred') 

        ser.close() 

if __name__ == "__main__": 

    main() 

root.mainloop() 
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Приложение Г. Программа «СканСим» 

 

import random 

 

print("          Программа СканСим для оценки времени контроля и 

диагностики изделий радиоэлектроники") 

print("                                       Версия 3.0, 2025 год") 

print("Разработана на кафедре метрологического обеспечения 

инновационных технологий и промышленной безопасности") 

print("                    Санкт– Петербургский университет 

аэрокосмического приборостроения") 

print(" ") #Пустая строка в консоль 

BS = int(input("Введите размер партии печатных узлов (от 10 до 100000 

штук): ")) 

PERCENT_OF_GOOD = int(input("Введите процент полностью исправных 

печатных узлов (G от 0% до 100%): ")) 

PERCENT_OF_IDENT = int(input("Введите процент печатных узлов с 

выявленной неисправностью (I от 0% до 100%– G): ")) 

print("Процент печатных узлов с невыявленной неисправностью N 

программа рассчитывает самостоятельно.") 

print(" ") #Пустая строка в консоль 

print("                       ДАЛЕЕ ВВЕДИТЕ СРЕДНЕЕ ВРЕМЯ ДИАГНОСТИКИ 

ПЕЧАТНОГО УЗЛА:") 

ATG = int(input("– полностью исправного (целое число минут от 1 до 

999, например 2): ")) 

ATI = int(input("– с выявленной неисправностью (целое число минут от 1 

до 999, например 5): ")) 

ATW1 = int(input("– с НЕвыявленной неисправностью менее опытным 

работником (целое число минут от 1 до 999, например 300): ")) 

ATW2 = int(input("– с НЕвыявленной неисправностью более опытным 

работником (целое число минут от 1 до 999, например 30): ")) 

print(" ") #Пустая строка в консоль 

 

TC = – 1 #Текущее время в минутах    

TW1 = 0 #Общее время работника номер 1 (менее опытного) 

TW2 = 0 #Общее время работника номер 2 (более опытного) 

plate = 0 #Номер платы в партии 
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print("Расчет количества печатных узлов полностью исправных, с 

выявленной и невыявленной неисправностью:") 

PG = int(BS*PERCENT_OF_GOOD/100) #Расчёт количества полностью 

исправных печатных узлов в партии, штук  

print("– количество полностью исправных печатных узлов в партии =", 

PG, "штук") 

PI = int(BS*PERCENT_OF_IDENT/100) #Расчёт количества печатных узлов в 

партии с выявленной неисправностью, штук  

print("– количество печатных узлов с выявленной неисправностью в 

партии =", PI, "штук") 

PN = int(BS– PG– PI) #Расчёт количества печатных узлов в партии с 

невыявленной неисправностью, штук  

print("– количество печатных узлов с невыявленной неисправностью =", 

PN, "штук") # 

print("Общее количество печатных узлов в партии =", BS, "штук") 

print(" ") #Пустая строка в консоль 

 

BATCH_G =['G']*PG #Формирование вектора длиной PG полностью исправных 

печатных узлов 

BATCH_I =['I']*PI #Формирование вектора длиной PID печатных узлов c 

выявленной неисправностью 

BATCH_N =['N']*PN #Формирование вектора длиной PNI печатных узлов c 

невыявленной неисправностью 

BATCH = BATCH_G + BATCH_I + BATCH_N #Формирование партии печатных 

узлов путем объединения векторов BATCH_G, BATCH_I и BATCH_N 

random.shuffle(BATCH) # Перемешиваем элементы вектора. Печатные узлы 

будут поступать в случайном порядке 

 

print("                                 РЕЗУЛЬТАТЫ ИМИТАЦИОННОГО 

МОДЕЛИРОВАНИЯ:") 

while plate < BS: #Моделируем процесс контроля и диагностика пока не 

продиагностируем все печатные узлы в партии 

    TC = TC+1 #добавляем к текщему времени 1 минуту (шаг 

моделирования) 

    if BATCH[plate] == 'G' and TW1 < TC: #Если печатный узел типа G 

(полностью исправный) и работник 1 свободен, то переходим к контролю и 

диагностике 
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        TW1 = TW1 + ATG #Увеличение общего времени менее опытного 

работника 1 на время контроля и диагностики одного полностью 

исправного печатного узла 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 

        print("Работник номер 1 ремонтирует G плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATG:03d}", "Суммарное 

время работы, минут:", TW1) 

    elif BATCH[plate] == 'I' and TW1 < TC: #Если печатный узел типа I 

(известная неисправность) и работник 1 свободен, то переходим к 

контролю и диагностике 

        TW1 = TW1 + ATI #Увеличение общего времени менее опытного 

работника 1 на время контроля и диагностики печатного узла с известной 

неисправностью 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 

        print("Работник номер 1 ремонтирует I плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATI:03d}", "Суммарное 

время работы, минут:", TW1) 

    elif BATCH[plate] == 'N'and TW2 < TC: #Если печатный узел типа N 

(неизвестная неисправность) и работник 2 свободен, то переходим к 

контролю и диагностике 

        TW2 = TW2 + ATW2 #Увеличение общего времени более опытного 

работника 2 на время контроля и диагностики печатного узла с 

неизвестной неисправностью 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 

        print("Работник номер 2 ремонтирует N плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATW2:03d}", "Суммарное 

время работы, минут:", TW2) 

    elif BATCH[plate] == 'G' and TW2 < TC: #Если печатный узел типа G 

(полностью исправный) и работник 2 свободен, то переходим к контролю и 

диагностике 

        TW2 = TW2 + ATG #Увеличение общего времени более опытного 

работника 2 на время контроля и диагностики одного полностью 

исправного печатного узла 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 
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        print("Работник номер 2 ремонтирует G плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATG:03d}", "Суммарное 

время работы, минут:", TW2) 

    elif BATCH[plate] == 'I' and TW2 < TC: #Если печатный узел типа I 

(известная неисправность) и работник 2 свободен, то переходим к 

контролю и диагностике 

        TW2 = TW2 + ATI #Увеличение общего времени более опытного 

работника 2 на время контроля и диагностики печатного узла с известной 

неисправностью 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 

        print("Работник номер 2 ремонтирует I плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATI:03d}", "Суммарное 

время работы, минут:", TW2) 

    elif BATCH[plate] == 'N'and TW1 < TC: #Если печатный узел типа N 

(неизвестная неисправность) и работник 1 свободен, то переходим к 

контролю и диагностике 

        TW1 = TW1 + ATW1 #Увеличение общего времени менее опытного 

работника 1 на время контроля и диагностики печатного узла с 

неизвестной неисправностью 

        plate = plate +1 #Переход к контролю и диагностике следующего 

печатного узла 

        print("Работник номер 1 ремонтирует N плату номер", 

f"{plate:06d}", "Ремонт потребовал, минут:", f"{ATW1:03d}", "Суммарное 

время работы, минут:", TW1) 

       

else: #Выводим в консоль все результаты моделирования 

    print(" ") #Пустая строка в консоль 

    print("Окончание проверки всей партии через", max(TW1,TW2), 

"минут(ы)") 

    print("Общее время работника номер 1 (менее опытного) =", TW1, 

"минут(ы)") 

    print("Общее время работника номер 2 (более опытного) =", TW2, 

"минут(ы)") 
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Приложение Д. Свидетельство о регистрации программы для ЭВМ 

«СканСим» 
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Приложение Е. Свидетельство о регистрации программы для ЭВМ 

«Программа для классификации дефектов печатных узлов при 

проведении тепловизионного контроля» 
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Приложение Ж. Акт о внедрении результатов диссертационной работы в 

ФГАОУ ВО «СПб ГУАП» 
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Приложение З. Акт внедрения о внедрении результатов 

диссертационной работы в ООО «Нью– Лайн» 
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Приложение И. Акт внедрения о внедрении результатов 

диссертационной работы в ООО «Бергмаш» 

 

 

 


